
AD-A118 733 PAR TECHNOLOG CORP NEW HARTPOH NY F/G9/
ON-LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM. OLPARS VI. USE -ETCIU)
JUN 82 S E HAEHN., D MORRIS

UNCLASSIFIED PAR-A2-21 NL

IIIIIIIIII II

lllll,4lll

4 PAR TECHNOLOGY CORPORATION
Y

q:,ii

U-j

Approved for public release:

distribution unlimited

:;j S

~2A. Al
.-. ,;.,~

'i' IAv,,D~ I tAcczB 3lonl Fc'r.

A".,i - .x2. o:"

Di.A £pC ." I

OLBARS 'User Manual

S-ahritted By

..R TECHNOLOGY CORPORATION
Route 5, Seneca Plaza

New Hartford, New York l34~13

Authors

Mr. Steven E. Haehn
Ms. Donna A. Morris

I PAPR REPO-RT #62-j~l

LJI

REPORT DOCUMENTATION 'AGE LlAll IcsLNc
[~b~ri-URE COM4PLLTING FORM

- ; _ ,E-_TNoMBER j2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

4. TITLE (fnd Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

OLPARS VI (On-Line Pattern Analysis and USER'S M

Recognition System) 6 PERFORMING ORG. REPORT NUMBER

82-21
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Mr. Steven E. Haehn
Ms. Donna Morris

9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT. PROJECT. T'ASK

PAR Technology Corporation
AREA6 W0K UNITNUMBERS

Route 15, Seneca Plaza
New Hartford, New York 13414

U. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DeLartrient of Defense June 18, 1982
Washington, D. C. N3 NUMBERC -PAGES

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
Same As Block 11 1s. DECLASSIFICATION/DOWNGRADNG

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17, DISTRIBUTION STATEMENT (of the absiract enltered in Block 20, ft diffe-ent from Report)

18 SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree aid. If necesa"ry and Identify by block number)

Pattern Recognition, Structure Analysis, Discriminant Analysis, Data

Transformation, Feature Extraction, Feature Evaluation, Cluster Analysis,
Classification Computer Software

20. ABSTRACT (Cortbe - Mer- efds tf na .ary ard Idenllfy by block nubw)

1 The User's Manual introduces the reader to OLPARS concepts, some
pattern recognition methodology, and the OLPARS displays. Instructions
example usage of each OLPARS command is included.

/

DID 1473 EDITION OF I NOV 65 I OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (WTievW Dlta EnIred)

TAELE CF CONTENTS

1. ON-LINE PATTERN ANALYSIS AND RECCGNITION SYSTEM . I

1.C INTRODUCTIONi 1

2. FUNCTIONAL ASPECTS OF OLPARS

2.C iNTRCDUCTION

2.1 OLPARS DATA REPRESENTATION.....

2.1.1 Trees, Nodes, And "What Is Current" 4

2.1.2 CLPARS Current Option 6

2.1.3 Excess Measurement Mode 6

2.1.4 Ignored Measurements

2.1.5 Vector Identifiers................

2.1.6 Notes On User Interaction With Commands 9

2.2 STATISTICAL VALIDITY CF USER DATA SET 10

2.3 DISPLAY DESCRIPTIONS 11

2.3.1 One-Space Displays (MICRO And MACRO) 14

2.3.1.1 One-Space Display Format l. 14

2.3.2 Two-Space Displays (SCATTER And CLUSTER) . . . 19

2.3.2.1 Two-Space Display Format 19

2.3.3 Confusion Matrix Displays 24

2.3.4 Rank Order Displays 2

2.3.4.1 Ranking Information 35

2.3.5 Data Tree Structural Displays 36

2.3.6 Logic Tree Structural Displays C

2.3.6.1 Logic Node information 2

TADLE OF CCNTENTS (continued)

USING CLPARS 47

3.0 YOUR'RE NEW, SC WHAT DO YOU DC? 47

3.1 NOTES C1 DATA COLLECTION 47

3.2 IMPORTANCE OF FEATURE EXTRACTION L8

33 HELLO OLPARS 49

3.4 CREATING A DATA TREE 50

3.5 BEGINNING ANALYSIS - EXAMINING YOUR DATA 5C

3.6 TEST DATA SET A "MUST" 51

3.7 STUDYING THE DATA STRUCTURE

RESTRUCTURING A DATA TREE, WHY? 57

3.9 CHOOSING THE "BEST" MEASUREMENTS 61

3.9.1 Selection Of Measurement By The Analyst . • 65

3.9.1.1 "Ai'comatic" Selection Of Measurements . . 66

3.9.1.2 Measurement Reduction Transformation 70

3.9.1.3 A Final Note About Measurement Evaluation 75

3.9.2 Data Transformations 76

3.9.2.1 The Normalization Transformation 76

3.9.2.2 Eigenvector Transformation (Data Reduction) 76

3.9.2.3 Measurement Transformation 80

3.10 LOGIC DESIGN AND EVALUATION 81

3.10.1 Designing Logic 82

3.10.2 "Between-Group Logic" 85

3.10.3 "Within-Group" Logic 90

q.10.4 Testing The Logic (Overall Logic Evaluation) 911

3.10.5 Reassociated Names 97 I
3.10.6 Accepting Or Rejecting A Logic Design 100

ii

TABLE OF CCNTENTS (continued)

-.10.7 Viewing Your Logic 103

-.11 SUMMARY 1C;

4. OLPARS COMMANDS 107

4.0 GENERA* STRUCTURE 107

4.1 COMMAND SUMMARY 112

4.2 COMMAND DESCRIPTIONS 116

4.1 OLPARS COMMAND DESCRIPTIONS 118

REFERENCES14

GLOSSARY

INDEXI-I

APPENDIX A - Multics OLPARS MathmaticsA-I

APPENDIX B - OLPARS User Notes B-I

B.1 Data Partitions (Boundaries) B-I

B.2 Evaluation Procedure- 2

B.2.1 Cne-Space B-2

B.2.2 Two-Space E-4

B.2.3 Examples B-6

!.
111

List Of Figures

Figure Page

2-1 OLPARS Command and Display
Relationships . .I

2-2 General Layout Cf One-Space
Display 15

2-3 One-Space Macro and Micro
Views 18

2-4 General Format of Two-Space
Display. z 21

2-5 Two-Space Scatter and Cluster
Plots. 23

2-6 General Format Of Between-Group
Confusion Matrix. 26

2-7 Between-Group Confusion Matrix
Example. 27

2-8 General Format Of Within-Group
Confusion Matrix.

2-9 Within-Group Confusion Matrix
Example. 1

2-10 General Format of Rank Order
Display. 33

2-11 General Format Of Data Tree
Display.

2-12 Data Tree Display Example. . . 39

2-13 General Format Of Logic Tree
Display o 4

2-14 General Format Of Logic Tree

Nodes and Logic Node Example. Ll4

2-15 Logic Tree Display Example . . 45

3-1 Some Available Information
From PRTDS Command 52

3-2 One-Space Coordinate
Projections 55I,

iv

List Of Figures

3-3 Eigenvalues And Two-space
Eigenvector Projection. . . 5

3- Two-Space Eigenvector Pro-
jection Scatter Plots (With
"selected" classes and Pro-
jected class means)

3-5 Data Partitionment Cn Two-Space
Displays . 59

3-6 Restructured Data Tree. . . . 60

3-7 Two-Space Data Projection After
Restructuring. 63

3-8 Overall Rank Order Display
Restructuring
(top showing vector count
weighting)
(bottom showing equalized
weighting). 64

3-9 Rank Order Display For Single
Class 67

3-10 Scatter Plots Showing Class
Overlap.. 68

3-11 Rank Order Displays For Class
Pairs 69

3-12 Rank Order Displays Showing
Measurement Selection . . 71

3-13 Rank Order Display Of
Measurements To Be Used In A
Data Transformation. 73

3_14 Data Tree Display And Scatter
Plot Projection After
Measurement Reduction 74

3-15 Eigenvalues And Data Tree After
An Eigenvector Transformation . 78

3-16 Coordinate Projection Plot
Of A Data Tree After An
Eigenvector Transformation • 79

3-17 Logic Design Choices 83

3-18 Logic Tree Formed Via NAMELCOG 84

v

L-t Cf Figures

3-19 'reating Eetween-Croup Logic
Cn Two-Space Display 6 Th

3-2C Logic Tree After Between-Group
Lcsic Generation. . . . CH

3-21 Creating Eetween-Group Logic
On Two-Space Lisplay C 59

3-22 Within-Group Confusion
Matrices .9.2. . 92

3-23A "Completed" Logic Tree. . 02

3-23B (continued) 94

3-24 Test Set Data Trees ... 95

3-25 Viewing Reassociated Class
Names 99

3-26 An Cverall Logic Evaluation . 101

4-1 Command Categories In CLPARS. 11

4-2 OLPARS Command Categories. . . 111

4-3 CLPARS Command Description
Format 117

B-i User Defined Regions Cn One
And Two Space Displays. . . . -3

B-2 Examples Of Vector-To-Region
Assignments -7,B-8,-9

vi

______ ______

SECTION 1

ON-LI ;E PATTERN ANIALYSTS AND JECGJITTON SYSTEM
(OLPARS)

1. INTRODUCTION*

A "pattern recognition" problem is described as the

recognition of the state of an environment based on a set f

features or measurements extracted from the envircnm,

Therefore, a "pattern recognition" problem consists of (1) fea'

extraction, that is, the definition of the measurements used

describe an environment, and of (2) pattern classification.

Feature extraction should provide a set of measurements that

yield information which aids in discriminating between the various

environmental states. Pattern classification requires the design

of a recognition logic which classifies the state of the

environment using the extracted environmental features.

The concept of a vector space is fundamental to all of the

problems discussed here. The extracted environmental features

(from now on referred to as measurements) aefine the basis of the

space; an object or an event is represented as a vector in chat

space, and pattern classification involves defining the

partitionment of this space into regions associated with each of

taken from [1] p.1-3

I; -LL]E FA"E :. ANIALYSlI A!,D RECC)GU7ICN GYNJE: -- 1
Introjuc tion

the states (or classes) of tne environment., in orer to solve a

pattern classification problem, statistical sample vectors from

eacn class must be collected and analyzed to yielu a satisfactory

classification logic.

,-ttern analysis" differs from pattern classification in that

the states (or classes) of the environment are not previously known

to the researcher. The data consists of a set of vectors

(measurements from the environment) which must be analyzed to

determine the inherent classes contained within Lne vector data.

The assumption made in pattern analysis is that vectors from a

class will cluster together in the vector space. Detecting and

identifying these clusters is the essence of pattern analysis.

2

.61,

SECTION L

FUNC TONAL ASPECTS OF OLPARS

2.J INTRODUCTI ON

In the following sections, OLPARS data representation (trees,

nodes) and operational concepts (current option) are described in

aetail. The descriptions of individual OLPARS displays can be

found here. Included is a discussion of the statistical validity

of a data set.

2. 1 OLPARS DATA REPRESENTATION

The vector data structure is represented within OLPARS as a

hierarchical tree where each node in the tree corresponds to a list

of vectors. The data tree usually consists of a senior node (the

root node of the tree, or oldest ancestor in the tree), with

subnodes (leaves, or children) directly beneath the senior node.

o senior node o

o 0 o sub-nodes o o
0 0\

o o o

3

F - ,lC 1O AS ?!- C--L R 2

. IINAL APiECT CJ. 2LPARS -

OLP.1RS DATA 7 1rTiC

The senior noue is associated with the entire list : vectors

wnile the lower-orcer noues represent sub-iists. In :urn, each

vector list associated with a child cf a parent ncae may be

sub-civiaed again (using structure ancdiysis tecnniques , giving

more nodes. Each subnode represents a single cata class. (state

in the environment).

The data vectors contain the measurements the user has

collected outside of OLPARS. Each vector has an identifier

(number) that can be user assigned or automatically generatea (see

FIL:IN command). These identifiers give the user the ability to

access individual vectors when the need arises.

2.1.1 Trees, Nodes, And "What Is Current" -

The names of data trees (and logic trees) are limited to a

maximum of eight characters. The tree name must begin with an

alphabetic character. The remaining letters (if any) must be

alphanumeric. Data tree node names are limited to four characters.

Any "printable"* character may be usea in a data noae name, except

a comma (,). The first character of the data node name is referred

to as the class display symbol, or class symbol. This symbol is

used to identify vectors belonging to a given node or class. Logic

nodes are referred to through numbers.

* does not include blanks, tabs, linefeeds etc.

4I

FU,CTI .,,,L ASPECT)F jLPiRS -- 2
rees, Noaes, And "What Is Current"

oaliz data node names Valid tree names

- Senior node AI3CDEFGH

ABCD D

3 Al

da! GRAINS 2

ab

Four asterisks (****) are explicitly reserved to name the

senior noae of all data trees. The senior node of a logic tree is

always named "I". Throughout OLPARS the concept of "current data

set" is used. This refers to the data that the user has most

recently designated for processing (see SETDS command). The name

of the "current data set" is derived from a tree name - node name

pair. (e.g. the "current data set" in the above table could be

ABCDEFGH (****) or ABCDEFGH(ABCD), or ABCDEFGH(#ab)). When the

"current data set "includes the senior node, the entire set of

vectors in the tree are used. When a lower-order node is

designated as the "current data set", only those vectors associated

with that node are used. Whether the set contains the data under a

single node of a preselected tree, or all of the data associated

with the entire tree, the "current data set" is related to only one

data tree.

Since more than one logic may exist for any single Gata set,

the concept of "current logic" must be introduced. The "current

logic" for a data set is the latest logic evaluated on the data

set. Note that the "current logic" may exist for any data set, but

5 !A

FUNCTiONAL ASPECT CF OLPARS -- 2
Trees, Nodes, And "%hat Is Current"

can only be created or evaluated on the "current aata set"

2. 1.2 CLFARS Current Option -

The OLPARS "current option" is used to determine which menu

,option list) of suggested "next-commands" should be displayed to

tiie user. Thus, the "current option" can be thought of as tne

"state" or "frame" in which OLPARS resides (e.g. structure

analysis frame or logic design state).

User functions which alter the OLPARS current option consist

of:

1. changing or deleting the current data set.

2. deleting the current logic tree

3. creating data projections

4. creating classification logic

5. performing measurement evaluations

The "current option" appears on all OLPARS displays. The

commands which alter the "current option" are considered "major"

OLPARS commands.

2.1.3 Excess Measurement Mode -

A data set is in "excess measurement mode" if the number of

features contained in a vector is greater than fifty (the maximum

number of measurements allowed is one hundred fifty). When such a

data set is created in OLPARS (via FILEIIN or MEASXFRM), the means

6

L~ir * _ ____ ___ ____ ___ ____ ___ ___

FUNCTIONAL ASPECT OF OLPARS -- 2

Excess Measurement ,oae

and covariances are not computed for the OLPARS data tree.

Only a few programs are allowed to operate on data trees in

"excess" measurement mode, they include:

S1CRDV Structure analysis using data coordinate projections

S2CRDV

LICRDV Logic design using data coordinate projections

L2CRDV

FILEIN

FILEOUT Data Tree Utilities

MAKETREE

PRTDS

DSCRM EAS

MEASXFRM

SLCTMEAS Measurement evaluation and transformation commands

TRANSFRM

UNION

Once the number of features in an "excess measurement mode"

data set has been reduced to fifty or less (via MEASXFRM or

TRANSFRM), the means and covariance are calculated for that data

set, and any OLPARS command can be used on the data set.

FUTCTIONAL ASPECT GF OLPARS -- 2

ignored Measurements

2. 1.4 Ignored easurements -

An analyst may find that particular measurements describing

the environment being studied are not providing useful information

for class separation. There might also be measurements that make

analysis difficult.* Possibly, the analyst may want to see the

class separation results without using some measurement(s). if any

of these situations arise, it is possible to ignore some

measurements of a data set, (during logic design or structure

analysis) without physically reducing the number of measurements in

the data set. (i.e., the measurements are eliminated from the

logic design or structure analysis computations only; not the user

data set). Further reference to ignored measurements can be found

in the individual logic or structure analysis command descriptions.

2.1.5 Vector Identifiers -

Numeric values are assigned to each vector for purposes of

identification (e.g. finding out which vector is not clustering

properly in the structure analysis or misclassified during logic

design). These numeric values (referred to as vector identifiers

or vector ids.) can be pre-assigned to feature vectors before they

enter OLPARS by the analyst, or as a data tree is created by OLPARS

(see FILEIN command description).

When new data trees are created in OLPARS, the creating

The covariance matrix statistics, calculated for every data
class, may be a "singular matrix".

8

FUNCTIUNAL ASPECT OF OLPARS -- 2
Vector ri entifiers

commanas may ask if vector identifiers are to be resequenced. if

no particular vector iaentifier has been assigned to a vector (by

the analyst), then vector identifiers can be resequenced.

Resequencing vector identifiers guarantees that a unique identifier

is present for each vector in a class (i.e., vector identifiers are

unique within a class, but may not be unique in the data tree).

Note, there is no requirement that these vector identifiers be

unique (i.e., OLPARS does not check for vector identifier

uniqueness). However, this may lead to vector identification

problems later.

2.1.6 Notes On User Interaction With Commands -

OLPARS commands can prompt the user for controlling

information or parameters using either a long or short prompt.

Commands will normally query a user with short prompts. The short

prompt is a terse or abbreviated statement of the desired input.

The user can change the prompt made from short prompts to long

prompts, or vice versa, by invoking the command CDEFAULT.

As an additional user aid, the user can respond to any text

prompt with a question mark (?). If the short prompt was initially

displayed, the OLPARS command will respond by displaying the long

prompt. If the long prompt was first displayed, the OLPARS command

will display a message indicating that the user should try the HELP

command for additional aid, and reprompt the user with the short

prompt (Note, graphics prompts do not use this convention).

L9

FUNCTIONAL ASPECT OF OLPARS -- 2
:lotes On User interaction With Commands

To escape an OLPARS command during user interaction, the user

can enter a null response (carriage return) to a textual prompt, or

a "q" (for quit) to a graphics prompt. Upon detecting this "quit"

response the command will stop execution and return to the general

command level of input (ote, there are a few exceptions to this

case which will send the user to the next prompt. At the next

prompt the user can "quit").

There are severai OLPARS commands. that make use of "class

selection lists". The user views a list of class names that are

under consideration and chooses which classes are to be used by the

command via the class display symbol. If the user decides all

classes are to be used, an asterisk (*) may be substituted for the

list of class symbols. An initial minus sign (-) to the "class

selection" prompt, before the class symbols, informs the command

that every class NOT in the user supplied list is to be used by the

command.

2.2 STATISTICAL VALIDITY OF USER DATA SET

(Or Will My Data Work In OLPARS)

As a user of OLPARS, the researcher must be aware of the

statistical validity of the design data set being used to create

classification logic, that is, how many vector samples are needed

for an adequate classification design. If not enough samples are

given in the design data set, the error rate of classification can

be high using a test data set. It is even feasible that the 13gic

10

FUNCTIONAL ASPECT CF OLPARS -- 2
STATISTICAL VALIDITY OF USER DATA SET

design algorithms will fail on the aesign aata set (e.;. the

inability to invert a covariance matrix).

D. Foley 131 shows that the estimate of the true error rate

of a classifier is a function of the sample size per class (A) ana

feature size (L). In particular, the function used is the ratio of

the sample size per class to the feature size (NIL). According to

Foley, if the ratio of N/L is greater than three, then on the

average the design-set error rate of classification is reasonably

close to the test-set error rate. His results were obtained using

a design data set with an underlying multivariate normal

distribution, but the results may be more general. Foley also

noted that if less is known about the underlying probability

structure of the environment (data set), then the ratio of N/L

should be increased.

Foley snows that the variance of the design-set error rate is

approximated by a function that is bounded by 1/8N. This implies

that even if the number of features is small, enough samples must

be used to minimize the variance of the design data set error rate.

2.3 DISPLAY DESCRIPTIONS

There are six major types of OLPARS displays: 1) one-space

(micro or macro), (2) two-space (scatter or cluster), (3) confusion

matrix (between group, within group), (4) rank order, (5) data

tree, and (6) logic tree. The following sections describe each

type of display. The descriptions are in the form of "display

11

FUNCTIONAL ASPECT OF OLPARS -- 2
DISPLAY DESCRIPTIONS

field entity - definition". There may be letters found in

parenthesis, preceding the display field entity. These letters

indicate the general region in which the entity can be found on the

display ("L", as the first character, represents "lower"; as the

second or only character, it represents "left"; "U" represents

"upper"; "R" represents "right"; "C" represents "center")

Figure 2-1 gives a list of commands that either generates or

modifies each type of display.

One and two space displays are created by structure analysis

and group logic design commands. These commands present a

"picture" of the structural or grouping nature of a data set.

Confusion matrix displays are created by logic design commands

or the logic evaluation command. They summarize, within a table,

the results of a partial or an overall logic evaluation,

respectively.

Rank order displays are created by measurement evaluation

routines. They present a ranking of measurement numbers, classes,

or class pairs, and give an indication of the discriminatory power

of the measurements in a data set.

Data ;nd logic tree displays present a structural picture of

data and logic trees, respectively.

12

One-Space Two-Space

BINW IDTH CDISPLAY
CDISPLAY CSCALE
CSCALE DBNDY
DBUDY DRAWBNDY
DRAWBNDY L2ASLG
INTENSIFY L2CRDV
LIASDG L2EIGV
L1CRDV L2FSHP
L IEIGV PRO JM N
PROJMN RDISPLAY
RDISPLAY REDRAW
REDRAW REPROJECT
REPROJECT RESTRUCT
RESTRUCT S2CRDV
S1CRDV S2EIGV
SlEIGV S2FSHP
SCALRET SCALRiET
SCALZM SCALZM
SELECT SELECT

Confusion Matrix Rank Order

CREATLOG DSCRMEAS
LOGE VAL RANK
NMEVAL SLCTMEAS
PWEVAL UNION
SUMMCM

Data Tree Logic Tree
aaaaaaaaaaaaaaaaaaaaaaaa

DRAWTREE DRAWLOG

Figure 2-1 OLPARS Command And Display Relationships

13

. I V_

FUJiCTIVONAL ASPECT OF ULPARS -- 2
DISPLAY DESCRIPTIONS (one-space)

2.3.11 One-Space Displays (MICRO And MACRO) -

A one-space micro display gives a "combined" view of selectec

data class frequency histograms, that is, a frequency nistoTram

from each projected data class is superimposed on a single base

line. By using the INTENLSIFY command, selected class nistograms

can appear as bargraphs.

A one-space macro display gives "individual" views of selected

frequency histograms in a "stack histogram" format (each histogram

has its own baseline). With more than three classes, a macro plot

will look less cluttered than a micro plot.

2.3.1.1 One-Space Display Format -

A one-space display format contains the data-classes-present

list, plot type, measurements used, date, time, menu, current data

set name, current option name, and a user interaction notes area

(see Figure 2-2). The data range (minimum and maximum data

values), bin size, and bin count appear in the lower left region of

the one-space display.

1 4l

-woo

== 0-z

z r

4-

00

Ir-4

Ij 0

oo
IU 0

-n u 0 X, >l
< ai

:'JC -I,AL ASPEC 7F JL?.A\S -- 2
-3 PLA Y ' E _' 'CiiPT~ re-5p ace)

Following i a cescription of the information "o.unc on a

z;ne-space display.

(LL) BIN CUNT - The number of compartments (bins, into
which the current cata range nas been
d iv id ed.

(LL) EBij STZE - The width or size of a single bin
(computed by aividing the aata range by
the number of bins found on the a-isplay).

CLASS DISPLAY - Symbol displayed is used to represent
SY-IBOL a particular data class.

(L-R) CURRENT OPTIoN - Command used to create the one-space
(OPTION NAME) display.

(L) DATA CLASSES - A list of display symbols of the classes
PRESENT found in the current data set (includes

DISPLAY FLAG and DISPLAY FLA-S ILX.

(LR) DATA SET - The current data set name, consisting of
(TREE NAME) the current data tree and node name
(NODE NAME) pair.

(UR) DATE, TIME - The date and time the current display has
been generated.

DISPLAY FLAG - When an asterisk appears next to the class
display symbol (found in the classes -
present list), projected vectors from that
particular class may be found on the
display. If no asterisk appears, the
vector from that class will not be found
on the display. -

DISPLAY FLAG - A non-blank symbol appearing between the
SYMBOL display flag and the class display symbol.

The symbol is used to show a "grouping" of'
the classes present.

16

S L APECT F L --TSPLY _CSA I PTIc: (one-space'

L 'E TE A i O,i - Region reservec for terse prc:mpts
7 uT22 prior to expectec ,rapnics input.

(JL) YKEASUREMEN TS - For coordinate projection, this entity11 to c r e
JSED represents the measurement used to eote

,he current display. For oti-er
projections, this entity is the number of
the projection vector used to create the
d ispl ay.

(R) >.EIU - List of "suglested" commands to be usec cy
operator.

(C) PLOT DISPLAY - Cen'-al area of the screen containing t;he
REGION projected data set display (see Figure 2-3

for plot examples)

(UL) ?LOT TYPE - The woras "MACRO" or "MIORO" denoting
which type of plot is being displayed.

(UL) SCALE MODE -The words "GLOBAL" or 11ZO~i.',"1 indicating
that the entire data range appears on the

current display (GLOBAL), or only a
portion of the data range is viewable
(ZOOM).

(JL) SCALE TYPE - The words "PROBABILITIES" or "VECTOR
COUNTS" showing that either the
probability that the vectors will be
located in a certain bin (i.e., the number
of vectors in that bin divided by the
total number of vectors in the data
class) , or that the number of vectors
found in the bin is being used in scaling
the current display.

(LL) X-MINIMUM - Value of the left side of the data
VALUE projection line found on the display

(the low end of the current data range).

(LL) X-MAXIMUM - Value of the rigiht side of the data
VALUE projection line found on the display

(the high end of tne current data range).

17

(CLASS DISPLAY SYMBOLS)

INDIVIDUAL
FREQUENCY
HISTOGRAMS

D D

C, C

B B

A A

1-SPACE MACRO VIEW

COMBINED
FREQUENCY
HISTOGRAMS

(COUNT OR B
PROBABILITY)

B C D
A C D

A

1-SPACE MICRO VIEW

Figure 2-3 One-Space Macro and Micro Views

18

,'8I

FU7CT.,NAL APECT OF LPAi'S --
LY)ESCi IPTPJf, (one-space)

2. _.2 'Two-Space Displays (SCATTER And CLUSTPER) -

A two-space scatter plot is a two-dimensional representation

of an N-space vector, wi~h each vector located at its "natural"

projection point on the screen.

A two-space cluster plot is a two-dimensional representatlon

of an N-space vector, with each vector "forced" into a location

within a grid. f one or more vectors from a single data class

fall within the same grid location, the display symbol for that

class is presented. if vectors from tio or more data classes fall

within a single grid location, an asterisk is displayed.

The actual presentation of the two-space cluster display is

generally faster than the two-space scatter display, especially for

a large data set. However, since each character displayed may

represent one or more vectors, this display could be misleading in

terms of vector density.

2.3.2. 1 Two-Space Display Format -

The two-space display format is similar to the one-space

display format with respect to the following entities; the

data-classes-present list, plot type, measurements used, date,

time, menu, current data set name, current option name, and a user

interaction notes area (see Figure 2-4).

19

FUNCTIONAL ASPECT OF OLPARS -- 2
CISPLAY DESCRIPTIONS (two-space)

Following is a description of the information found o r a

two-space display.

CLASS DISPLAY - Displayed symbol is used to represent a
SYMBOL particular data class.

('R) CURRENT OPTION - Command used to create the two-space
(OPTION NAME) display.

(L) DATA CLASSES - A list of display symbols of the classes
PRESEiT found in the current data set (includes

DISPLAY FLAG and DISPLAY FLAG SYMBCL).

(LR) DATA SET - The current data set name, consisting of
(TREE NAME) the current data tree and node name pair.
(NODE NAME)

(UR) DATE, TIME - The data and time the current display has
been generated.

DISPLAY FLAG - When an asterisk appears next to the class
display symbol (found in the classes -
present list), projected vectors from that
particular class may be found on the
display. If no asterisk appears, the
vectors from that class will not be founo
on the display.

DISPLAY FLAG - A non-blank symbol appearing between the
SYMBOL display flag and the class display symbol.

The symbol is used to show a "grouping" of
the classes present.

(LL) INTERACTION - Region reserved for terse prompts prior
NOTES to expected graphics input.

(UL) MEASUREMENTS - For coordinate projections, the numbers
USED represent the measurements used to create

the current display. For other
projections, the numbers represent the
projection vectors used to create the
display.

20

ww)LL

LLUJ
I-mo

LLz0 X

CL.z

IU LJ u

CL.)

LUU

cnn

<o

01 0

=Z

cix

C/) uL LI. - I

4-) c.,JJCf
w) w3)

(~< Lw

hi _ 21

FU:'CTI0o;JAL ASPECT OF OLPARS -- 2DISPLAY DESCRIPTIONS (two-space)

(H) MENU - List of "suggested" commanas to be used by
the operator.

(C) PLOT DISPLAY - Central area of the screen containing the
REGION projected data set vectors (see Figure 2-D

for plot examples).

(UL) PLOT TYPE - The words "SCATTER" or "CLUSTER" denoting
which type of plot is being displayed.

(LC) SCALE MODE - The words "GLOBAL" or "ZOOM" indicating
that the entire data range appears on the
current display (GLOBAL), or only a
portion of the data range is viewable
(ZOOM).

(LC) SCALE TYPE - The words "SQUARE" or "RECTANGULAS";
initially, all two-space projections have
"SQUARE" scaling. This means that the
value of the measurement units on both the
x and y axes are equal. When scale
"zooming" (obtaining a close-up view of a
subsection of the original display) or a
scale change occurs, the scaling becomes
"rectangular", that is, the value of the
measurement units on the x and y axes are
no longer equal.

(LL) X-AXIS - The minimum and maximum data values found
RANGE on the first projection axis (the

horizontal axis of projection).

(LL) Y-AXIS - The minimum and maximum data values found
RANGE on the second projection axis (the

vertical axis of projection).

22

(CLASS DISPLAY SYMBOLS)

A

AA
AB
AB B BB

BB
C C CC cc B D D

DccC D D DD

DD DDDD

2-SPACE SCATTER PLOT

(CLASS DISPLAY SYMBOLS)

A
A A
A BBB
A BBBBB

COCC
CCC DDD
CC DDDDDDI

2-SPACE CLUSTER PLOT

Figure 2-5 Two-Space Scatter and Cluster Plots

23

F JNCI"IONAL ASPECT OF OLP A RS -2
DISQPLAY D ESCRIPTIONS (two-space)

2. 3. Confusion Matrix Displays -

(BETWEEN-GROUP, WITHIN-GROUP, CVERALL)

A "conf-ision matrix" is an ordered table of vector tallies

used to show the results of partial or overall logical evaluation.

A "between-group" confusion matrix is generated after

evaluating logic created via a one-space or two-space data

partitionment (group logic). Each row in the matrix presents the

evaluation results of an individual class. The left-most column of

the matrix shows how many vectors belong to each data class. The

remaining columns show the tally of vectors (from each class)

belonging to a group (region). Class statistics (across a matrix

row) and group statistics (down a matrix column) are presented

snowing the number and percentage of vectors correctly ana

incorrectly classified. Statistics are also presented for the

total number of vectors evaluated.

NOTE

Since it may be desirable to
redisplay the data set projections
and the partitions upon which the
evaluated logic is based, a
"between-group" confusion matrix is
not stored in a display file (unlike
"within-group" confusion matrices).
Consequently, for a "between-group"
confusion matrix that contains more
than one page of information, a
terminal screen copying mechanism
should be provided to record the
multiple page display.

24

FUNCTIOJAL ASFECT OF OLPARZ -- 2
DISPLAY DESCRIPTIONS (confusion matrix)

Figure 2-b shows the general layout of a "between-group"

confusion matrix. Each named area is described in greater aetail

in the following text. The information outside of the "blocked"

diagram is described first, followed by "block" descriptions,

according to their numbered order. An actual "between-group"

confusion matrix aisplay can be seen in Figure 2-7.

Following is a description of the information found on a

oetween-group confusion matrix display.

CURRENT OPTION - Command used to create the logic
(OPTION NAME) which in turn is used to create the

between-group confusion matrix.

DATA SET - The current data set name, consisting
(TREE NAME) of the current data tree and
(NODE NAME) node name pair.

DATE TIME - The date and time the current display has
been generated.

DISPLAY TYPE - The words "CONFUSION MATRIX (BTWN. GROUP
LOGIC)" indicating the type of display.

MENU - List of "suggested" commands to be used by
the operator.

1. REGIONS - Partitioned regions of one-space or
two-space plots containing user specifiec
data classes; one-space regions: "LEFT",
"RIGHT", "MIDDLE", two space regions:
"CONVEX (1)", "CONVEX (2)", "EXCESS".

2. LOGIC NODE Logic node numbers associated with user
defined regions.

25

II I I I I • r ll l I I I I Il I

LUL

C/ LU

LLU

LU ULJO-

I- (.D Cl)D

<o L

0 C0

U- (2
L-Cl LUI

Ul) LU
U) Cl)

-j0 <

= 0

< LU 4
CL 0

(n) Cl
-cl) 0 LU

CL)

L)LU LU

> C

Z

LI
LU Cl)

0 Cl)

LLU

LUU

<- 0 X

Z) Cl L

0 Ui

26

(A~I am= .J ..J L

US at I

L2 =Cc IjI.

wwmi IwOL2
I CJ~%eo I I'~

I w& ix U3 IX-W
AM = I m i..cu

JAI a C I (.30 -4

L

ID cdz I a. a

I- IJI0. I (N W4-'%

(.4-4ow
) (Y)

o3 ~c) ca ID)

W" CD(Jc D0 N D 0 wl %

a. M C.) J

CL CA(f L U

q.4 ft

'- c) 0 0 0
<-4 3 -C

m mC' 00iZ.

m W WWU '.0(0U Ii)1 .4LLJIX
L~A.. = LU W 1)w 1 41-4 > uiQ u
=Z k IX ZZC- 4<Z J % I I-400 -W IX aIX
o Co 0x _j C 1 0 0 V~ W.-.- 0 oo.Ixa.

C.Q (.(W I--3 L) Ul 'w030

FUNCTTJNAL ASPECT CF JLPARS -- 2
2:2PLAY DESCRIPTION-S (confusion matrix)

DISPLAY YMJBCLS - Display symbols of data classes assigneu
'F ASSOCIA'ED to a given region.
CLASSES

LOGIC NAME - Current logic tree name.

D. CLASS NAMES - Names of the data classes present at tne
node for which logic has been created.

u. LOGIC NODES
(PARENT) - Noce at which logic has been created.
(CHILDREN) - 'lodes associated with user aefined

regions.

VECTOR - Number of vectors found at each logic
COUNTS node after evaluation.

C. CLASS SUMS - The counts and percentages of the number
AND PERCENTAGES of correctly and incorrectly classified

vectors of a given class.

9. LOGIC NODE - The counts and percentages of the
SUS AND number of correctly and incorrectly
PERCENTAGES classified vectors at a given logic node.

10. TOTAL SUMS - The total count and percentage of
AND PERCENTAGES correctly and incorrectly classified

vectors.

A "within-group" confusion matrix is generated after

evaluating logic created by pairwise discriminant logic or nearest

mean vector logic. The main section of the display consists of a

numeric matrix in which the column labels correspond to the data

classes on which logic was designed (assigned c _assez). The row

labels are associated with the classes of the data set being

evaluated (true classes). Any element of this matrix is the number

28

4'

FUNICTINAL ASPECT OF OLPARS -- 2
DISPLAY DESCRIPTIONS (confusion matrix)

of vectors, from a given data class, assigned to a particular logic

nooe. Following the matrix are various totals and percentages

associated with the rows (true classes) of the matrix. These

tallies represent the number and percentage of vectors classified

correctly ana incorrectly. inciudea is a count ana per- entage of

vectors which may have been rejected during classification.

An "overall" confusion matrix is produced after evaluating a

completed logic tree. The format of this confusion matrix is

identical to that of the "within-group" confusion matrix. Figure

2-8 shows the general format of a "within-group" confusion matrix.

The menu, current option, and current data set are not shown, but

are in the same position as in the other displays. Following is a

detailed description of the "blocked" entities found in the figure.

An actual "within-group" display can be seen in Figure 2-9,

following the general format Figure.

1. LOGIC - Contains logic type (e.g. nearest mean
IDENTIFICATION vector), logic tree name, design data set

name and dimensionality.

2. ASSIGNED CLASS - Names of the data classes on which logic
NAMES was designed.

3. TRUE CLASS - Names of the data class evaluated against
NAMES the current logic.

4. VECTOR COUNTS - Number of vectors from a true class
determined to belong to a particular
assigned class (design dat., set class).

29

LU

z 1

(n, 0

< u ci:

0 =C)

> 0

-(l (n

-L 0

LLI .4

V) _o

(.-F

300

o - Lo

wwwwww.

*~C
CD- CD Ip

* w
CDM4D DC

0it;

t-LL IL (196

,C W Dn

cue- (A 3
.

0Lx ii ~0w~e

- 0 (% (M0

04 040pCD(' L . . L

~~~-L I .. W L.

UW) (0 0 40 00 <DC DWJD=a
= 1 (0 ( - C * *

m - 0 L) 1-

O >- 
£ LS IL

<cw0 0 4a

CL 2 0 0
AXO 0 

j-
4- -i-

o o RI s-- M oo r aWIX=1

CL -4 a3 L)clL a- w Q. w - I-Ooa

31



FUNCTIONAL ASECT :F (CLPAR3 -- 2
DISPLAY DESCRIFTIO:IS (confusion iiatrix)

. TRUE CLA S -" Te counts anu percentages of tne numoer
TCTALS of correctly and incorrectly classifiec

vectors of each evaluated aata class. A
count and percentage of the number of
vectors rejected from each class is also
presented.

b. CLASST71CATTON - The total number of vectors evaluated
SLAIMARY and the overall number and percentage of

vectors correctly ana incorrectly
classified, along wit'h tne total number
and percentage of vectors rejected,
appears here.

2.3.4 Rank Craer Displays -

A rank order display gives a measure of the discriminating

power of a set of measurements. There are five types of rank order

displays:

(1) overall ranking of measurements

(2) measurement ranking for a single class

(3) measurement ranking for a class pair

(4) class ranking for a single measurement

(5) class pair ranking of a single measurement

Following is a description of the information found on each

type of rank order display (See Figure 2-10). There are two

categories of information described here - general information ano

ranking information.

32



LJJ

Z C/)LU LUL

LU a-L

z -j j
LU I < LU

LU Ln cox =

< >

0

LU) W CL)0z E

u 0 V)

< -
z-

LL.

-o

33



DiSPLAY DECR;PTIOUS (rank order)

]EkJERAL INFOR;,IATION

CLASS DISPLAY - Symbol displayed is used to represent
SY,'IBOL a particular data class.

(LR) CURRENT OPTION - Command used to create the rank order
(OPTION NAME) display.

(LR) DATA SET - The current data set name, consisting of
(TREE NAME) the current data tree and node name pair.
(NODE NAME)

(UC) DATE, TIME - The date and time the current display nas
been generated.

(DL) DISPLAY TYPE - The words "A RANK ORDER DISPLAY"
identifying the type of display.

MEASUREMENT - Position of an element in a data vector.
N UM B ER

(R) MENU - List of "Suggested" commands to be used by
the operator.

(UR) PAGE NUMBER - If the display consists of more than one
page, the word "PAGE" is followed by the
page number.

PAIR OF CLASS - Two class display symbols separated by a
DISPLAY SYMBOLS slash (/); used to represent a pair of

data classes (class pair).

(UC) RANK - One of the following five phrases will
ORDER TYPE identify the type of rank order display

(Note: "C" represents a class display
symbol, "C/P" represents a pair of class
display symbols, and "X" represents a
measurement number.)

3

3L4



FU!NCTIC!NAL ASPECT OF OLARS -- 2
DISPLAY DESCRIPTIONS (rank order)

(1) "AI DVERALL RA? KING"
(2) "A XEASUREMENT RANKINiG OF CLASS C"
(3) "A MEASUREMENT RANKING OF CLASS

PAIR C/P"
(4) "A CLASS RANKING OF MEASUREMlENT X"
(5) "A CLASS PAIR RANKI:NG OF

MEASUREMENT X"

2.3.4. 1 Ranking Information -

A rank order display consists of at most four columns which

will be described in the following text in order of their

occurrence from left to right on the display.

RANKING OPTION - The first column in the rank order display
(Column 1) represents the item being ranked;

measurement numbers, class display
symbols, or pair of class display symbols.

(1) Measurement - Measurement numbers are ranked according
number to their ability (power) to aiscriminate

(separate) either (a) all classes
(overall) , (b) a given class from all
other classes, or (c) one class from
another. These three types of measurement
rankings correspond to the first three
types of rank order displays previously
mentioned. In a ranking of measurement
numbers, measurements which have the most
discriminating power, appear at the top of
the list. An asterisk (*) preceeding a
measurement number indicates the
measurement has been selected for a data
tree transformation.

(2) Class display A ranking of classes based on tne power a
symbol given measurement has to separate them

from all other classes. Those classes
that are best separated from all other
classes by the particular measurement
occur at the top of the list.

(3) Pair of - A ranking of pairs of classes based on the
class display power a given measurement has to separate

35



U,'N C 71CIAL ASPECT OF OLARS -- 2
DISPLAY DESCRiTTIC,3 (rank oroer)

3ymbols the first class in tne pair from tre
seconu class in the pair. Those pairs of
classes that are best separated from eacn

other by the given measurement are fount
at the top of the list.

i,,NKED VALUES Values than provide an estimate of tne
(Column 2) ability of one or more measurements to

separate either

(a) all classes
(b) a particular class from all other

classes
(c) one particular class from another

class.

ADDITIONAL INFORMATION
(FOR AN OVERALL RANKING ONLY)

Class display - Each symbol corresponds to a measurement
symbol number found in the first column (same
(Column 3) row) of the display. The class display

symbol represents the class that is best

separated from all other classes by this
corresponding measurement number.

Pair of class - Each pair of symbols corresponds to a
symbols measurement number in the first column
(CQlumn 4) (same row) of the display. The pair of

class display symbols represents the pair
of classes that is best separated from
each other by this corresponding
measurement number.

2.3.5 Data Tree Structural Displays -

OLPARS vector data is represented as a hierarchical tree (see

tne section on "OLPARS Data Representation"). A structural picture

of an CLPARS data tree may be obtained at any time (see DRAWTREE

command description). The data tree display consists of node

names, the number of vectors at each node, and interconnecting



7J::CTIO::AL ASPECT CF OLPAFS -- 2
DISPLAY DESCRIPTIONS (cata tree)

structural lines snowing the relationship bet-.een nodes.

Following is a description of the information found on an

OLPARS data tree display (see Figure 2-11). An actual data tree

may be seen in Figure 2-12.

(LR) CURRENT OPTION - OLPARS command (see Section 2.1.2)
(OPTION NAME)

(UL) DATA TREE - The name of the data tree being
NAME displayed.

(LR) DATA SET - The current data set name, consisting of
(TREE NAME) the current data tree and node name
(NODE NAME) pair.

(UC) DATE, TIME - The date and time the current display has
been generated.

(UL) DISPLAY - The words "OLPARS DATA TREE" identifying
TYPE the type of display.

(R) MENU - List of "suggested" commands to be used by
the operator.

NODE NAME - The name of a class or group of vectors
("I****I" represents the senior noae of a

data tree)

MEASUREMENT - The dimensionality of the data tree being
COUNT displayed (the number of measurements per

vector).

PAGEOF - If all nodes to be displayed do not fit on
one page, the number of the page displayed
ana the total number of pages for the
display is shown.

VECTOR COUNT - The number of data vectors at a lowest
(leaf) node.

37



uw

C/LL1W0

z CL Z
u

fx 0

- 0-

LU

z
Lii 0

010z iF
0

LLJ1

LL czx

CL Co

uj0

cm a.

38



-UJ $A

r~k. cI-- >.

~a.
a; CCoO

cm4

at v m

4c-4

-LL.

W..
c LM

-- 4

39N



FU;ICTIUNAL ASPECT CF OLARS -- 2
DISPLAY D ESCRIPTIC IS (data tree)

2.3.6 Logic Tree Structural Displays -

A display which gives a structural picture of an OLPARS logic

tree may be obtained at any stage of logic development (see

DRAWLCG). The logic tree display consists of subdivided rectangles

(boxes) and interconnecting structural lines. Each box represents

a node in the logic tree. Information displayed in each logic node

consists of the logic node number (node identity), the type of'

logic at the node, and the classes present at the node. The

interconnecting lines illustrate the relationship between nodes.

Following is a description of the information found on an

OLPARS logic tree display (see Figure 2-13). Information from two

catagories will be described here - general information and logic

node information. Logic node information is located inside the

subdivided rectangles on the display.

GENERAL INFORMATION

(LL) CLASS - The number of classes in the design data
COUNT set. This is also the number of classes

at the senior node of the logic tree.

CLASS DISPLAY - Symbol display is used to represent
SYMBOL a particular data class

(UL) CLASSES - A list of the class display symbols of the
PRESENT classes in the design data set.

'40

414



-j L iU

LUL

LU

LU

E -E

LU
< -~

0

0

4-'

LU 0
-~ LU

CDI--

LU C'J

~~LU

0-U

cn<

41



F7 CTIONAL ASPECT CF CLPARS -- 2
DISPLAY DESCRITIONS (logic tree)

(LR) CURRENT OPTION4 - OLPARS command (see Section 2. .
(OPTION NAME)

(LA) DATA SET - The current data set name, consisting of
(TREE NAME) the current data tree and node name
(CNODE NAME) pair.

(JC) DATE, TIME - The date and time the current display has
been generated.

(LL) DESIGN - The tree name, node name pair of the aata
DATA SET set used to create the logic.

(LL) DIMENSIONALITY - The dimensionality of the design data set
vectors.

(UL) DISPLAY - The words "OLPARS LOGIC TREE" identifying
TYPE the type of display.

_(UL) .LOGIC - The name of the logic tree being
NAME displayed.

(C) LOGIC TREE - Structural display of an OLPARS logic
tree.

.T.R MENU - List of "suggested" comman-ds to b6 used by
the operator.

-Z 6.6.1 Logic Node Information-

Figure 2-14 identifies the regions of the subdivided rectangle

which represents an OLPARS logic node. Following is a description

of each region.

CLASS(ES) - If the logic node is incomplete, the class
PRESENT display symbols of the design data set

classes residing at the logic node are

shown. If not all class display symbols

42



;NC-1.:2.AL , ?E- ' JF .LrA. .  --
D:SPLAY -d...::2E I c tree)

f it zn the Dox, tcse ", t f L are shnown
t'oiicweu by "..." (inuicatin r. ;ere are
.iore) if tnc logic rooe is comp-pete,
there is only one class present, anc its
name appears in tnis cortion of Lhe Dox.
For reject nodes, tnis region is empty.

INDEPENDENT - If there is an independent reject strategy
REJECT STRATEGY at the logic node, an asterisk (i*)
INDICATOR appears in this location; ozherwise this

location is left blank.

LOGIC NODE - Identity of the logic node being
NUMBER presented.

LOGIC TYPE - If logic has been designed at the node,

the name of' the OLPARS command creating
the logic appears in this location. For
logic nodes with no logic and more than
one class present (incomplete logic
nodes) , the character string "INCMPLT"
appears. For Reject nodes and logic nodes
with only one class present (completed
logic nodes), this region remains empty.

Six examples of logic nodes, as they would appear on a

display, are given in Figure 2-14 and are described in the

following text. An actual logic tree display can be seen in Figure

2-15.

1. The command "L2EIGV" created logic at this node. All
classes in the design data set are present ("...")
indicates that not all class display symbols fit in the
box). Note, when the logic node number is "I", the node
is called the "senior node" of the logic tree.

2. The command "NMV" created logic at this node. Two classes
are present. Their class display symbols are "A" and "B".
The asterisk (*) indicates that there is an independent
reject strategy at this node.

3. This logic node is incomplete, that is, no logic has been
designed at this node, and there is more than one class

present at the node.

43

.4



INDEPENDENT REJECT STRATEGY INDICATOR

r-LOGIC NODE NUMBER

J .- LOGIC TYPE

__ -,--CLASS(ES) PRESENT

AT NODE

i 1EIGV 1 NMV 3 INCMPLT

ABCDEFG..,, AB CDEFGHI...

1 2 3

4 I*RJEC 5 1*61

'ANOD' "BNOD'

4 51 6

Figure 2-14 General Format of -gic Tree Nodes
and Logic Node Examples

4U

ifC



0A 0 0*"*

0. ac -(

b-aa U-

- % 3

IDW

%L %. % .

I LUO

Q- LU

#.- v

L)1

C--9.

f,-.
(np a. a ~ '

ZL. uj 9-DQ
~~0~ C.)

CL0
.. Ui JAIA

OQ)

L45



FUNCTIONAL ASPECT 'IF OLPARS -- Z
DISPLAY CRT3S(logic tree)

4. This is an example a reject node. Note, *.-he "cl.ass(es)
presen~t" portion of tne box is empty.

5. This logic node is considered a completed logic node.
There is one class present and its name is "ANCD".

6. This is another example of a completed 'Logic node. There
is one class present and its name is "12N0D1 . Note, an,
independent reject strategy exists a; this node.

'46



SECT1O0; 3

JST: G CLPARS

3.0 YOUR'RE 'JEW, SO WHAT DO YOU DO?

This Section introduces a researcher to the usage of the

analytic tool called CLPARS. New users are shown how to access

OLPARS, and are given an initial view on how to approach analysis

of their data* (because there is more than one method of analysis).

As user's become more sophisticated, they will develop their own

analytic methods. Use Appendix A for a mathematical reference.

3. 1 :OTES ON DATA COLLECTION

Data collected for OLPARS must have the following

characteristics: (1) It must be representative of the real world,

(2) there must be a sufficient amount so that results obtained will

be statistically significant (see Section 2.2) and (3) it must be

in the form of vectors. Another factor to be considered is if the

sample data being used to design a classifier is representative of

the entire time period that the classifier will be used. For

example, will a classifier developed using crop data collected in

the spring be useful for classifying crop data collected in the

* The data set we will use to illustrate various points
throughout this manual is named GRAINS. The features in the
GRAINS data set are measurements of energy reflectivity of
various crops. Each measurement represents a certain portion
of the energy in the infra-red spectrum.

47



USIIG OLPAiS -- 3
.. "1 1 DATA COLLECTIGN

fall. In such a case, it may be necessary to ada the aimension

rtime collected" to the data.

3.2 IMPORTANCE OF FEATURE EXTRACTION

As mentioned in the introduction of this manual, pattern

recognition consists of feature extraction, and pattern

classification. First and foremost, emphasis should be placed on

feature extraction. It is important for you, the analyst, to know

what each measurement in the data set you have collected

represents.** Some measurements may be closely relatea to each

other (the length of a side of a rectangle in relation to the area

of the rectangle), while others may have no connection, whatsoever

(the color of a human eye, in relation to the weight of a person).

A feature can be an environmental "raw" measurement (weight of an

object) or a statistic obtained from the "raw" measurements of' the

environment (number of peaks in a wave form).

During structure analysis or measurement evaluation, you may

find that the features used to represent the objects being

classified distinguish all but two of the objects. Another feature

may have to be picked from the environment to separate these

problem objects. The analysis and feature extraction process may

have to iterate several times.

As can be seen in the following story, it is important to

** An example of feature extraction for the classification of hand
printed numerals appears in [2].

48



'J S::, P.LARS -- 3
!M FORT A :!CE OF FEAT URE _ XT?- AC T. ".N

obtain the proper attributes for r !cognizing an scject in its

env ironment.

"There were two farmers who had ad joining fields separatea by
a stonefence. Both farmers had a norse whicn tney woula let graze
in their respective fields. Every evening when they would go to
bring their horses in for the night, Tuney founa that one of the
horses would have gotten across into the neighboring fielc to be
with the other horse. Then the farmers would have to determine
which horse was theirs. So they decided to tie a ribbon on one of
the horses tails. However, when they located the horses :ogether
the following day, the ribbon was nowhere in sight (It had been
torn off the horse by some nearby underbrush. Tnis time, they
decided to take a notch out of one of the horses ears to make it
distinguishable from the other horse. The following day, when the
horses were found, the farmers saw that both horses had notches in
their ears. Sometime during that day the unmarked horse had gotten
its ear caught in some barbed-wired fencing, which had torn a notch
in its ear. The farmers were beginning to understand that they
needed a tell-tale sign that could not be altered by the horses'
day-to-day encounters. So they decided to measure the height of
each of the horses. They used their hands as a measuring device.
The first horse measured was fourteen hands high. Then the other
horse was measured, and sure enough, the farmers found that the
white horse was one-hand taller than the black horse."

3.3 HELLO OLPARS

If you have not used OLPARS before, you won't have an OLPARS

directory properly set up for your use. You should see the local

OLPARS manager/installer. The manager has to create some specia)

files for you and should show you how to get access to the OLPAR

system.

Making yourself known to OLPARS (better known as "logging in")

may vary from system to system. You may have to specify a

username, password, terminal type, etc. This information should be

available from the OLPAR system manager.

9 ,



'SI:G LPARS3 -- 3

2EATING A DATA TREE

. C1EATI11G A DATA TREE

,nce you have "logged in", you will be ready to do some work.

Lf you are a first-time user, you won't have any data trees to use,

so you will have to create some. The command which creates OLPARS

data trees, from user collected data, is called FILEIN. At some

previous time, you will have had to create a system text file

containing the data which you want to examine, within the format

that is acceptable to FILEIN (see description of FILEIN*). If the

system text file exists, invoke FILEIN to create your OLPARS data

tree.

If you are interested in seeing which data trees are present

in your OLPARS directory, use the LISTREES command. It will give

you an alphabetically ordered listing of the names of all the trees

existing in your directory.

3.5 BEGINNING ANALYSIS - EXAMINING YOUR DATA

As a data analyst, you have apriori knowledge of the data you

have collected (see section on importance of feature extraction).

This "before-hand" knowledge can be augmented by obtaining some

statistical information about the data from OLPARS. Therefore, one

of tne first operations to perform after converting your data into

an OLPARS data tree is to print out your data using the print data

set (PRTDS) utility.

After "logging in" to OLPARS, anytime a commana description is

needed, it can be obtained by using the HELP command.

50



USING OLPARS --

3EC ING ANALYSIS - EXAMI:IJG YOUIi DATA

if you have not yet generated features to represent the

objects to be classified, and are using the "raw measurements" or

attributes taken directly from the environment, this commnand can

show you each data vector, the range and overlap of each

measurement in the data, the means and stanoard deviations of the

collected classes, and give covariance and correlation matrices of

each class in the data. The measurement ranges and overlap graphs

(See Figure 3-I) are quite useful in determining whether or not

there is any class distinction in the "raw measurements"

themselves, before the data is examined in structure analysis, or

put through the feature extraction process (Feature vectors can be

analyzed with this method also).

3.6 TEST DATA SET A "MUST"

Every logic created should have its validity tested with data

not used in the logic design.

If you have collected two sets of data, one for logic design

and one for testing the logic design, then this next step can be

omitted. This step consists of dividing the original data set into

a design data set and test data set.

The command CRANDTS (create random test set) "randomly"

selects vectors from the original data set and creates two new data

sets; one for logic design and one to be used for testing that

logic. When creating the test set, remember that enough vectors

must remain in the design set to keep statistical validity intact.

51

. . . . ...I



I rr

TREE STRUCTURE OF DATA TREE grains RANGES FOR grains (soev

NU E 1F -FENSIONS 12 MEASUREMENT INIMUM MAXIMUM RANGE

TOTAL NUMBER OF NODES 1 i66.0000 176.0000 10.000
2 170.0000 121.1M00 1l.OOO

NUMBER OF LOWEST HODES 7 3 191,0000 !98.0000 7.0000
4 189.0000 196,0000 7.0000

VECTOR 5 162.0000 17B.0000 1E.X00
COUNT 6 161.0000 172.0000 ! ooo

7 18.0000 IF4,0000 ., 3CM
293 grains a 165.0000 177,10000 i2.000

9 178.0000 191.0000 : .oi0

10 164.0000 179.0000 15.0000

42 ........ so 11 154.0000 172.0000 19.0..34
42 ........ corn 12 173.0000 137.0000 i4,0000
45 ##to .... cats

42 ,,,..weat
43 *........Clov
37 .. . .. alfa
42 ., ,

OVERLAP GRAPH FOR NEASUREW'IT 12

CLASS MINIFUM KIAXIMUMIIIIIIIIIIIIIIIIII///II////
/ /

sou 173.0000 187.0000 / s- s /
/ /

corn 166.0000 191.0000 / c - e /
/ /

oats 164,0000 183.0000 / /
I /

weat 183,0000 198,0000 / w/
/ /

Cloy 139.0000 170.0000 / C- C /
/ /

alua 131,0000 156.0000 /aa/ /

rue 167,0000 194,0000 / r - r I
/ /

Figure 3-1 Some Available Information from PRTDS Command

52

I



USING CLPARS -- 3
STUDYINJG THiE DATA STRUCTUR

3.7 STUDYING THE DATA STRUCTURE

At this point, you could choose to perform measurement

evaluation or structure analysis on your design data set. This

section deals with some ideas and examples of structure analysis.

The basic use of structure analysis in OLPARS is in

determining the clustering properties of each data class; does the

data class cluster around one point (unimodal data) or more than

one point (multimodal aata)? If the data is multimodal, it is

frequently better to sub-divide the class into its component

sub-classes before attempting to design logic for distinguishing

between classes. This is particularly true if the logic to be

designed is statistically based.

All the algorithms for structure analysi- involve projecting

the data onto a line (one-space projections) or a plane (two-space

projection), If multimodality is present, the analyst is allowed to

partition the projection space. (Note, these projections may also

be used as the basis for group logic design).

For a first attempt at structure analysis, you might try

one-space coordinate projections (SICRDV). This projection will

show you the spread of an individual measurement. The data class

range information in this projection is identical to that of the

data print overlap graph (for the same measurements), except with

the coordinate projection display, the added histogram(s) shows you

how the data clusters. Note, in the macro plot of Figure 3-2 which

53



USING OLPARS -- 3
STUDYING THE DATA STRUCTURE

depicts the GRAINS aata set clustering of measurement twelve, that

the "Cloy" aata class appears to hiave two separate clustering

points about the class mean. The "intensified" micro plot (same

figure), with the projected data class mean (below the base line)

illustrates this clustering more effectively.

Another projection type to try is a two-space eigenvector

projection. The eigenvectors and eigenvalues of the covariance

matrix of the data set are generated. The two largest eigenvalues

computed correspond to the two eigenvectors to be used for the

projection space. The plane defined by these two eigenvectors

minimizes the sum of the square of the distance of each vector from

the plane (as done in least squares line fitting). This particular

projection preserves the class clustering structure. it also

preserves clustering that may occur within a class (a multimodal

class). Thus, the eigenvector projection is a good tool to help

locate multimodal data. Note, using this projection does not

guarantee that all classes will be separable or that multiplc mode

classes can be found (other plane projections may show better

separations for a particular class), but it is a good start at

analyzing overall data structures.

Figure 3-3 shows a two-space eigenvector projection for the

GRAINS data set, along with a list of the computed eigenvalues for

the data set covariance matrix. This projection has separated the

classes "Cloy", "alfa", "rye", and "weat" fairly well. The classes

* Mathematical evidence is shown in Appendix A.

54

• 1.



MACRO PLOT (MEAS. 12) DATE: 20-JAN-G2 11:11:39
* c ZOOM SCALE 9INWIDTH

* 0 * u LVECTOR COUNTS
*C CDISPLAY

CSCALE

DBNDY

DRAWBHDY

INTENSIFY

PROJMH

i. RDISPLAY

REDRAW
RESTRUCT

C ,.,, C
SCALZM

SCALRET
0 0.SELECT

C .,1C5 .. l 1. 3

HIMa 1.3108E+02 BIN SIZE - 2.BGE+B CURRENT DATASET:
MAX = 1.9180E+02 BINS a 39 OPTION: grains

SICRDU

MICRO PLOT (MEAS. t2) DATE: 29-JAN-92 11:19:31
s c ZOOK SCALE BIWHNDTH

UECTOR COUNTS
SC CDISPLAY

CSCALE

DBNDY

29 DRAWBNDY

INTENSIFY

Is PROJHN

RDISPLAY

REDRAW

IS RESTRUCT

SCALZM

SCALRET

SELECT

C
MIN 1.3100E+02 BIN SIZE u 2.00E+09 CURRENT DATASET:
MAX 1 I.9100E+02 BINS a 30 OPTION: grains

SICRDU l~

Figure 3-2 One-Space Coordinate Projections

55



NUMBER EIGENU ALUE

1 9.884?13E 02
2 2.755214E+02
3 ?.694961E+01
4 7.991776E+.6
5 4.30282"E+00
6 2.421696E+e

1.47906E+08
S 1.626976E+e8
9 1.401383E+e8

18 1.345815E+Oe
II 8.592678E-01
12 7.110363E-el

PRINTOUT (Y/N)? N

EICENUECTOR MO. FOR THE X PROJECTION: 1

EIGENUECTOR NO. FOR THE Y PROJECTION: 2

SCATTER PLOT (MEAS. 1,2) DATE: 18-JAN-82 12:?:8
* * c I .... ' "'CDISPLAY

*0 *W
C 1 CSCALE

DBNDY

DRAWBNDY
W

4i PROJMN

C v RDISPLAY
F C ¢ REDRAW

CC C C
C C C %?90WW W RESTRUCT

C C 0 C 0 REPROJECT
C C~4 % (4is0 uSCLI

%05 WO~ wrSAL
d 4 0 a 1 r

a oa d (- r itSCALRET
r 0 r rr rr r r SELECT

MINIMUM MAXIMUM CURRENT DATASET:
X: -1.3355E+02 -1.5812E+01 GLOBAL SCALE OPTION: grains
Y: 5.1160E+02 6.3121E+02 SQUARE S2EIGUk

Figure 3-3 Eigenvalues and Two-Space Eigenvector Projection

56



JSihG CLAXS --

STUDYING THE DATA STRUCTUiE

"soy", "oats", and "corn" overlap. f you look at the next

displays (Figure 3-4) which limits the number of classes shown at

one time, you can see that the classes "weat", "soy" and "Cloy"

each cluster at two separate points, away from their respective

means (class symbols located in rectangles). These classes are

showing signs of bimodality. At this point, each class may be

restructured into two subclasses reflecting the bimodal clustering.

3.8 RESTRUCTURING A DATA TREE WHY?

If multimodal classes have been found to exist in a data set,

those classes should be divided into subclasses. This will aid in

reducing the number of misclassified vectors that could appear

during logic design. Thi,3 proce.5s of creating data subclasses is

termed "restructuring the data".

The restructuring process operates as follows. A multimodal

class is chosen to be restructured. The projected vector display

is sub-divided into regions* containing the subclasses. The

regions are defined by partitions or boundaries drawn on the

displays (see Figure 3-5 and DRAWBNDY) after subclass regions have

been defined, the data class is re-structured by using the command

RESTRUCT. Figure 3-6 shows a data tree display of the GRAINS data

set after re-structuring each of the bimodal classes.

The regions should be "convex" regions, as in the geometric

term "convex" polygon.

57

A,



SCATTER PLOT (MEAS. 1,2) DATE: 18-JAN-82 13:58:,9

. CDISPLAY

C W CSCALE
r C wLa DBHDY

C w  DRAWBNDY

c s w RDISPLAYC s W

r r ES 4 REDRAW
C c S RESTRUCT

REPROJECT

SCALZH

SCALRET

SELECT

Mi 5i N MUM MAX IMUM CURRENT DATASET:

-1.3355E-82 -1.5812E+01 GLOBAL SCALE OPTION: greins
y: 5.1208E+02 6.0391E+92 RECTANGULAR S2EIGU JZ

SCATTER PLOT (MEAS. 1,2) DATE: 18-JAN-82 13:58:46

C' CDISPLAY
0 1t
C WJ CSCALE

rC C 61i DBNDY

W DRAWBNDY

C s PROJN

CC 
' w

I C WW RDISPLAY

C OCCC s U REDRAW
C E RESTRUCT

S 3 .REPROJECT

SCALZM

SCALRET

SELECT

MTHIII UM MAXIMUM CURRENT DATASET:
X: -1.3355E+02 -1.5812E+01 GLOBAL SCALE OPTION: grains
Y: 5.1298E+02 6.8391E+02 RECTANGULAR S2EIGU

Figure 3-4 Two-Space Eigenvector Projection Scatter Plots

(with "selected" classes and projected class means)

58



SCATTER PLOT MEAS. 1,2; DATE: 19-JPN-82 89:57:49
~s c 1 CDISPLAY

t a CSCALE
r 

"'h DBNDY
WwI

Wi DRAWBNDYl .c C w
C wwW PROJMN

C W RDISPLAY

r, REDRAW
1 hRESTRUCT

C w
C C s REPROJECT

C C s w W h SCALZM

hi SCALRET

[ c cc
c c W hi SELECT

i hiC S,

MINIMUM MAXIMUM CURRENT DATASET:
X: -1.3384E e2 -t.3672E+el ZOOM SCALE OPTION: grains
Y: 5.4954E+02 6.8579E+02 RECTANGULAR S2EIGU

SCATTER PLOT (MEAS. 1,2) DATE: 19-JAN-82 18:02:53
oS . CDISPLAY
0 W~
C a CSCALE

e o DBHOY

% DRAWBNDY

C h vwi PROJMN

RDISPLAY

hiW REDRAW

C ~ ' "RESTRUCT

C C s i hi6
C h i REPROJECT

c c s Wh hiW SCALZM
C hc X SCALRET

C C C C h SELECT

C C h

s

MINIMUM MAXIMUM CURREHT DATASET:
X: -1.3384E+02 -1.3672E+01 ZOOM SCALE OPTION: grains
Y: 5.4954E+82 9.0579E+02 RECTANGULAR S2EIGU

Figure 3-5 Data Partitionment on Two-Space Displays

591



C~L -j w -, N w 0 U) 9

own (A. 136 C, Ci _j 1- ra ..

w f- #*

woo

CDIm-
soMCLC

CD OOC'

0 C..)O 73

0

('A

I ~ . V" 14T %d 
4

w ~ -

~ .0 0 L U

cc 3k .w cs 0 U0

L. t IA C
ww

C

600



S I G H T E 2L P E E NTc::icoSI:;G- TW- h " :_ELT" ME...... W,... .. ,MENT:

3. CHCOS!IG THE "BEST" MEASUREMENTS

it %iay be possible to reduce the number of features Dr.Lnlv

selected without affecting the clustering of the data. This is due

to the fact that some features may not be useful in differentiating

classes. Measurement evaluation algorithms aid in the selection of

features which have the most discriminatory power. The

discriminant measure algorithm (DSCRMEAS) is particularly useful

for ranking a set of measurements when the class conditional

probability distributions are approximately unimodal.

Measurement evaluation commands provide various types of

rankings which enable an analyst to evaluate the measurements of a

data set. Selection of the best measurements is a non-trivial

problem that involves examining different types of rank order

displays and combining this information with any apriori knowledge

about the data. The "best" measurements may be selected, either by

the analyst (SLCTMEAS) or through the use of the union by class

and/or union by class pair algorithm(s) (UNION). The original data

tree may then be transformed (TRANSFRM) to produce a new data tree

containing only the selected features. This measurement reduction

process can simplify and speed up analysis of data.

In Section 3.3, data classes showing bimodality were

restructured into subclasses. Figure 3-7 shows that the

restructured GRAINS data set appears to be approximately unimodal.

Therefore, it might be appropriate at this time, to perform a

61



"':SIN ILPARS --

,:,2.,I~G ThE "2E'T" .E.SURE. TS

uiscr-ninant evaluation on the data.

Figure 3-3 shows tihe output of the measurement evaluation.

Measurements are ranked on the basis of their ability to

discriminate all classes (overall discrimination). The largest

uiscriminant values correspond to measurements with the most

discriminatory power. The top display shows the results when the

discriminant measurement value is calculated by weighting

(multiplying) the variance of each measurement for a class by the

number of vectors in the particular class. The bottom display

shows the output when the variances are weighted equally. That is,

the wei~ning factor is the total number of vectors in the data set

is divided by the number of classes in the data set. The "equal

weighting" of classes may be used when the results of the

evaluation might be affected by a large difference in the number of

vectors present in each class. For example, it may have been

difficult to collect a large amount of data for a particular class.

However, there is knowledge, or a reason to believe that the sample

data available is a good representation of the population (real

world). Consequently, the data should be weighted equally during

measurement evaluation for better results.

62

I I I II I III I I •I



SCATTER PLOT (MEAS. 1,2) DATE: 19-JAN-82 18:09:02

S I "CDISPLAY

t CSCALE
tC :tk

t ir DBNDY

DRAW BDY

PROJM14

C I va DISPLAY

kC C ;cC C .. 3 REDRAW

k4 C A 6 j~,~d %W RESTRUCT
k k 0 0 REPROJECT

o 0004 so SO " SCALZN

0 tr ItSCALRET

r erer F; r r SELECT

rrr P

MINIMUM MIAXIIMUM CURR ENT DATASET:
X: -1.3355E+02 -1.5812E+81 GLOBAL SCALE OPTION: greins
': 5.116eE+82 6.3121E+82 SQUARE S2EIGJ

SCATTER PLOT (MEAS. 1,2) DATE: 19-JAN-82 18:11:48
S . CDISPLAY

* W * CSCALE
$C Ik w

r Wm DBNDY

V - DRAWBNDY

CC-, PROJMN

RDISPLAY

REDRAW
S14 M  RESTRUCT

W 14 REPROJECT
I 14 TM SCALZM

k" 4(SCALRET
k k k k
k k k SELECT

5 S S
S g4

S

MINIMUM MAX IMUM CURRNT DATASET:
X: -1.3394E+02 -1.3402E+01 ZOOM SCALE OPTION: gruins
Y: 5.4758E+02 6.853?E+e2 RECTANGULAR S2EIGU

Figure 3-7 Two-Space Data Projection after Restructuring

63



A RANK ORDER DISPLAY DATE: 26-JAN-92 11:38:20

AN OUERALL RANKING 
RANK

MEAS VALUE CLASS CLASS PAIR SLCTMEAS

9 7.8259E 01 C N/C TRANSFRM
8 ?.1279E+91 C N.C
12 6.8153E+01 k w/k UNION
!I 6.5765E+01 W W/e
6 5.3037E+01 C S/C
5 3.6815E+91 S S/C
1 3.6739E+01 S S/u

19 3.2301E+01 W N/C
3.8449E+01 C S/C

2 2.389@E+1 S S/C
4 2.8213E+01 C S/C
3 1.6947E+01 C S/C

CURRENT DATASET:
OPTION: GRAINS
DSCRHEAS U::

A RANK ORDER DISPLAY DATE: 29-JAN-82 11:39:18

AN OVERALL RANKING RANK

MEAS VALUE CLASS CLASS PAIR SLCTMEAS

9 6.5931E+91 C N/C TRANSFRM
12 6.2497E+01 /a
11 6.1464E+01 W/d UNION
8 6.1387E+91 C /C
6 4.7576E+01 C S/C
5 3.2553E+01 C S/C
1 3.8567E+61 S S/W

19 2.9497E+01 C 1/C
7 2.8588E+91 C S/C
4 2.5014E+01 C S/C
2 2.3873E+01 C S/C
3 1.5561E+91 C C/r

CURRENT DATASET:
OPTION: GRAINS
DSCRMEAS 2*$*

Figure 3-8 Overall Rank Order Displays

(top showing vector count weighting)

(bottom showing equalized weighting)

64



USIN~G -OLPAR$ -

CiiOOS I:JG T:IE "BESTl"' !!EASUR E:*IENTZ

For the GRAINS data set, there is no significant difference

between weighting class variances equally or weighting by the

number of vectors per class*, because there is not a large vector

difference between the class samples gathered.

In the remainder of rank order example figures, the

discriminant measurement values are calculated by weighting the

class variances equally.

3.9.1 Selection Of Measurement By The Analyst-

After obtaining some class discriminating measurements (see

previous section) a data transformation using a portion of the

overall best measurements could be performed to carry the analysis

further, other types of rank order displays can be obtained (see

RANK command description).

Figure 3-7 (previous section) shows that class "oats" overlaps

with several classes; predominantly with classes "soy" and "corn".

A measurement ranking of class "oats" orders the measurements on

the basis of their ability to distinguish class "oats" from all

other classes. Figure 3-9 shows that measurement S is the best

measurement for distinguishing class "oats" from all other classes.

Since measurement 8 is also one of the overall best measurements

* In Figure 3-8, the two rank order displays show that
measurements 9, 8, 12, and 11 remain the top four measurements,
and that the other measurements (except measurement 2) remained
in their relative order.

65



USING CLPAS --

ChG03;G THE "ELST" MEASUREME!1TS

(see Figure 3-6), it could be a candidate measurement for a data

transformation.

The scatter plots in Figure 3-10 show the overlapping of class

"oats" with classes "soy" and "corn". Figure 3-1 1 shows two rank

order displays. The first display is a measurement ranking of the

class pair "oats" and "soy"; the second is a measurement ranking

of the class pair "oats" and "corn".

These rankings order the measurements on the basis of their

ability to separate class "oats" from class "soy" ana class "oats"

from class "corn", respectively. Note that measurements 4 and 1

are the best measurements for separating class "oats" from class

"soy", and measurement 10 is the best measurement for separating

class "oats" from class "corn". Although these measurements were

not ranked very favorably in the overall evaluation, they can be

included in a data transformation because of their abilityfto

separate these classes which overlap.

3.9.1.1 "Automatic" Selection Of Measurements -

A large number of data classes and/or a large vector

dimensionality may make it difficult for the analyst to select

measurements. If, after analyzing your data and looking at rank

order displays, you cannot determine which measurements to choose.

Two options are available to automatically select measurements:

(1) Union by class and (2) Union by class pair (both found in the

UNION command). The "union by class" algorithm performs a ranking f
66



z LL. WO

WO=

In

Im -4.- -.4 -

L )

C)
-1 - ri ..J QrQlo- -%. -- 0 u

w vO e)C M Or 4 + 5I,CoI I"*

3- w

CO C

zz

ww
00

6LU



SCATTER PLOT (MEAS. 1,2) DATE: 19-JAN-82 16:35:38
.S s CDISPLAY

C to
N CSCALE

C kr DBNDY

ORABNDY

PROJMN

RDISPLAY

REDRAW
0 RESTRUCT

0 Do" co
0 0  S,0  0o REPROJECT

04 o~7 sSo SCALZN

coo  SCALRET

SELECT

MINIMUM maxMIMu CURRENT DATASET:
x: -1.3355E+92 -1.5812E+91 GLOBAL SCALE OPTION: GRAINS
Y: 5.1168E+02 6.3121E+02 SQUARE S2EIGU

SCATTER PLOT (MEAS. 1,2) DATE: 19-JAN-82 15:48:41
S s CDISPLAY

CSCLE
C k

DBNOY

DRAWONDY

PROJN

RDISPLAY
C Ec C CREDRAW

c C 0 oRESTRUCT
o 00 REPROJECT

oO0 0 SCALZM

G o  SCALRET

SELECT

MINIMUM KAXIKU4 CURRE4T DATASET:
X: -1.3355E+e2 -1.5812E+01 GLOBAL SCALE OPTION: GRAI1S
Y: 5.I16OE+92 6.3121E+e2 SQUARE S2EIGU

Figure 3-10 Scatter Plots Showing Class Overlays

68

' '• - ' . . ; :. 'i ,... . . ..



A RANK ORDER DISPLAY DATE: 2e-JAN-e2 89:39:19

A MEASUREMENT RANKING OF CLASS PAIR o/S 
RANK

MEAS VALUE SLCTMEAS

4 1.8754E-81 TRANSFRM
1 t.8152E-01
5 1.6648E-01 UNION
2 1.6461E-01
3 7.6756E-02
6 7.5643E-02

16 2.6829E-02
I 2.2041E-e2

12 2.8734E-02
11 1.6893E-02
9 9.4119E-04
a 3.8382E-05

CURRENT DATASET:
OPTION: GRAINS
DSCRMEAS

A RANK ORDER DISPLAY DATE: 19-JAN-82 16:02:24
RANK

A MEASUREMENT RANKING OF CLASS PAIR o/c

MEAS VALUE SLCTMEAS
1 2.7456E-01 TRANSFRM
9 1.3466E-91
9 1.2425E-01 UNION
1 6.4682E-02
2 1.6827E-02
3 8.9116E-03
7 4.27482-83
6 4.1665E-03
12 3.2931E-03
5 2.0438E-03
4 1.5792E-03

11 1.2915E-03

CURRENT DATASET:
OPTION: GRAINS
DSCRMEAS

Figure 3-11 Rank Order Displays for Class Pairs

69

LinlnIIII_ _l__ _illin_.



US G OLPARS -- 3

CHOOSING TIE "BEST" MEASUREMENTS

of measurements for each class and selects the measurement that was

the best (largest) from each ranking. The result is the union (as

in set notation) of the best measurements for distinguishing single

classes from all other classes. The "union by class pair"

algorithm is identical to the "union by class algori~hm", except

that measurements are ranked for each class pair, rather than for

each class. The result is the union of the best measurements which

distinguish one class from another class.

Figure 3-12 shows two more rank order displays. The top is

the result of a union by class; the bottom is the result of a

union by class pair. The asterisks on the display indicate which

measurements were selected by the algorithms.

3.9. 1.2 Measurement Reduction Transformation -

(Following Measurement Evaluation)

The measurement evaluation procedure will most likely consist

of a combination of the two previously described techniques, manual

selection of measurements by the analyst, and "automatic" selection

of measurements by commands. For instance, measurement evaluation

could begin with an examination of various rank order displays.

The analyst studies the displays (rankings) in an effort to

determine which measurements best separate classes. The second

phase of evaluation could be a selection of measurements using the

union by class and/or union by class pair function(s) ("automatic"

70

h.1



0RANK ORD'ER DISPLAY DATE: 1?-JAN4-82 13:41:49

AN 011EPALL PANKING PAN4K

MEAS VALUE CLASS CLASS PAIR SLCTMEAS
19 7.8250E+01 C WcTASP

t 9 7.1279E*81 C W'C
tI Z 6.8M5E+t1 ka' 0 1 ON
* 11 6.5765E~el91

Is 5.383'E+01 c S/c
5 3.681;E+01 S S'C
I 2.6739E+ot S S'W

to 3.23@1E+01 14 1-C
7 3.0449E.91 C S'C

2 Z.M3eE+91 S S'C
4 2.8213E+01 C S/C
3 1.0947E+01 C S.'C

CURRENT DATASET:
OPT!ON: gan
DSCRP9EAS

A RANK ORDER DISPLAY DATE: 19-JAN-92 13:42:39

AN OVERALL RANKING RANK

MEAS VALUE CLASS CLASS PAIR SLCTMEAS
* 9 7.8259E+01 C U-C TASR
it 9 7.1279E+01 c TR/SR1
t 12 6. 1113EeG1 k /,k UNION
* It 6.~5SE~e1 W u
t 6 5.3ii"E~e1 C S/C

5 3.68I5E*Ot S S/C
t I 3.6"39E+01 S /

to1 3.23elE+9t W 14-C
* 7 3.0449E.91 C S/C

2 2.8398E~el S Sfc
It 4 2.8213E+01 C S/,C

3 L.6947E+01 C S/c

CURRENT DATASET:
OPTION: gan
DSCRMEAS Mr

Figure 3-12 Rank Order Displays Showing Measurement SelectLion

71



JS:NG CLP,.RS -- 3

Ci ,E THE "BEST" XEASUREMEITS

selection). The results of the second phase of evaluation wilI

either verify the analyst's initial findings or provide additional

measurements for selection. A final decision as to wnich

measurements will be chosen may be based on t he analyst' s

observations in combination with the results of the union

functions. Following measurement evaluation, those measurements

that were selected will be used to create a new data tree.

An example of a measurement selection procedure, followed by a

measurement reduction transformation is described in the following

text. For the GRAINS data set, measurements 1, 4, and 10 were

selected as a result of the analysis previously done on class

"oats", and because they were selected by the union by class pair

algorithm. Measurements 8, 9, 11, ana 12 were chosen because they

are the "best overall" measurements, and because they were selected

by both the union by class and union by class pair algorithms. For

this example, measurements were selected using the command SLCTMEAS

(see F-gure 3-13). After measurements were selected, a data

transformation was performed by the command TRANSFRM. The top of

Figure 3-14 shows the new data tree called NGRAINS (new GRAINS).

The structure of the new tree is identical to that of GRAINS. The

number of measurements per vector, however, is only seven. These

seven measurements correspond to measurements 1, 4, 10, 9, 10, 11

and 12 in the GRAINS data tree.

72



U) ow-

- C/) V)

~' - =L0

<Cs

I T)

CDC
-. 0C. LC(J (J.CC

w x U)

C Cu 0

oz

-j
-- a
<Xa

-LO

4w m- - M. V - .M - - - -

w

73



r - - . .; EE: I T '  .......r li ..

OLPARS ,ATA 7;EE Drns" DATE: 29-JAN-82 16:20:00 ANYTNING

r-ye A42:

i1a(37'(*

kov (22)
CloyClov Clvr (21)

whea (21)

otS (45)

corn (42)

(22)

.C Soy (20)

NUMBER OF iAASUREMENTS PER VECTOR 7 CURRENT DATASET:
OPTION: ngrains
ANYTHING ***

SCATTER PLOT (MEAS. l,2) DATE: 29-JAN-82 16:21:18
S $ t s CDISPLAY

*c
w CSCALE

a Pk DBNDY

DRRBHDY

PROJMN

RDISPLAY

W.* C c_ REDRAW

% ~cC cC~~4~c~ 5  w~ RESTRUCT

k RF.PROJECT

to! SCALZ1

0 SCALRET
4 r " SELECT

MINIMUM MAXIMUM CURRENT DATASET:
9: -4.6756E401 7.0909E01 GLOBAL SCALE OPTION: ngrains
t: 3.5748E+02 4.7791E 02 SQUARE S2EIGU

Figure 3-14 Data Tree Display and Scatter Plot
Projection After Measurement Reduction

714



JSJLG C LPAi S -- 3
CilOCSING THE "EEST" EASUREiE:JTh

As mentioned previousl 1 , tne purpose of :neasuremenT evaluation

and measurement reduction is to eliminate non-discriminating or

non-essential measurements from a data set. If the most

discriminating measurements are present in the new aata tree, the

clustering of the data should not be affected. On the other hand,

if after a data transformation, clustering is no longer present,

then important measurements have been eliminated. The bottom of

Figure 3-14 shows an eigenvector projection of the data set

NGRAINS. it can be seen that the elimination of measurements 2, 3,

5, 6, and 7 did not greatly change the clustering of the data

(compare with Figure 3-7). Consequently, the newly created data

set NGRAI!NS can be used for logic designi g.

3.9.1.3 A Final 1ote About Measurement Eva uation -

Evaluating measurements for the purpose f reducing the data

set dimensionality can be an iterative process. In the previous

example, measurements were selected primarily on the basis of their

"overall goodness," that is, they demonstrated an ability to

separate classes. If one or more classes cannot be se;arated after

designing and evaluating logic, it will be necessary to re-evaluate

the measurements in the original data set in an attempt to find

aiscriminating measurements for these classes.

75



US NG OLPARS -- 3

CNOOSING THE "BEST" MEASUREMENTS

3.9.2 Data Transformations -

in addition to a measurement reduction transformation

(performed in conjunction with measure:nent evaluation

computations), a data set within OLPARS may be transformed by any

of the following three independent transformations: normalization,

eigenvector, or measurement transformation. Upon execution of any

of these algorithms, a new tree containing the transformed vectors

is created. The new tree will have the same structure as the

original tree.

3.9.2.1 The Normalization Transformation -

The normalization transformation determines the standard

deviation along each coordinate measurement of the selected data

set. Each vector component within the data set is then modified by

dividing it by this corresponding standard deviation. The

resulting normalized data set will have unit variance along each

coordinate measurement. It may be necessary to normalize a data

set when extremely large or small data values cause the results of

numerical calculations to be inaccurate (i.e., numerical "round

off" problems)

3.9.2.2 Eigenvector Transformation (Data Reduction) -

The eigenvector transformation computes the eigenvalues and

eigenvectors of the covariance matrix of the selected ata set.

Those eigenvtctors corresponding to eigenvalues with values greater

76



1: 4';G "'L P A L2
CHC 1:G TiE ZEST" :EA'URE:-,E:.T-

than a user-specified thresho a are used to transfor:n the data set,

that is, each vector from the data set is projected onto each of

the selected eigenvectors. The resulting scalar number(s) obtaineu

from the projection become measurements in a new vector. This

vector represents a mapping of the original data vector onto the

eigenvector subspace defined by the user. The eigenvector subspace

provides a least squares fit to the selected data set, since the

sum of the squared residual distances from the subspace is

minimized. The error in fitting the data can be determined by

summing the remaining (unselected) eigenvalues. The transformation

essentially involves an orthonormal rotation of the basis vectors

of the data set until they are aligned with the eigenvectors.

This technique has proven useful both as a research tool and

as an aid to structure analysis and logic design. Measurement

reduction may also be performed through the use of the eigenvector

transformation. The newly created data set will have a

dimensionality equal to the number of eigenvectors used in the

transformation. An example of a data reduction using the

eigenvector transformation is described in the following text.

The top of Figure 3-15 lists the eigenvalues for the data set,

GRAINS. The user has typed in a threshold of eigenvalue number of

6 which will cause the eigenvectors corresponding to the six

largest eigenvalues to be used in the transformation. The bottom

of Figure 3-15 shows the data tree EGRAINS which was created as a

result of the transformation. The dimensionality of EGRAINS is 6.

The display in Figure 3-16 shows a coordinate projection of

77



E R EICENUALUE

2.755214E*02
3 ~ 7.694861E+01
4 7.991776E+e
5 4.302927E 0
6 2.421696E40e
7 I.'4796E&ee
a !.626976EO0
9 1.401383E+88

10 1.345815E+Oe
11 8.502678E-01
12 7.110363E-1

PRINTOUT (Y/N)? N
NUMBER (POSITION) OF THE THRESHOLD EIGENVALUE: 6

OLPARS DATA TREE 'EGRAINS" DATE: 05-=EE-e2 14:19:14 NY TH INC

/rve (42)

QIf (37)

yklov (22)Cglov

Clvr (21)

wedt ~ (1
-C whea (21)

oats (45)

corn (42)

Sov (20)

HUMBER OF MEASUREMENTS PER VECTOR 6 CURRENT DATASET:

OPTION: EGRAINS
ANYTHING ;It*

Figure 3-15 Elgenvalues and Data True After
an Eigenvector Transformation

78

IA



wL >- m (L c l w w-
CIA na Z ) w

C.) = 0 - M l Z'

q-Ix a~ w Ca LVI~~C C)U

IL L

I')! U~ oLL WOQ

ooJ IUA i. DI-Al
4 1J

Ae 0

4w -1 o

S 01 "-0

4Z40

a:1 00

- -+ 4-'

CO ww
o.. 04-

W Ct'-.

<r U-)0

CL~ -.- '

O )CQCIA

(ni=U

U-I) kD
IA~~~ 0 I. Lr) --*

IA0 3w 0~C z~

79



USING CLPARS -- 3
C*.iOOS IN THE "BEST" MEASUREMENTS

.neasurements I and 2 from the new data tree EGRAINS. Notice that

this display is identical to the eigenvector projection plot in

which the data set GRAINS was projected onto the two largest

eigenvectors (see Figure 3-7)

3.9.2.3 Measurement Transformation -

(Data Combination Or Alteration)

A measurement transformation allows the user to define new

features which are functions of the original features. The new

features are defined using FORTRAN statements which are placed into

a FORTRAN subroutine by the user (see the MEASXFRM Command

Description). The measurement transformation option provides the

OLPARS user with practically an unlimited capability for defining

both linear and nonlinear transformations. Once the new features

have been defined, the transformation is performed, and a new tree

containing vectors composed of the new user-defined features is

created.

A measurement transformation may be performed to rescale one

or more measurements in a data set. The scaling factor may be a

function defined by the user, such as a square root or logarithmic

function, or the value of one or more measurements, or a

combination of both of these. A measurement transformation can

also be used to combine linearly dependent measurements into single

measurements, or to eliminate unwanted measurements from a data

set.

3 DI 'l i I I I I I . . .. . w' , " , : i , "



USING CLFA'i3S --

LOGIC DESIGN AND EVALUATICN9

2. 1J LOGIC DESIGN AND EVALUATIN:1

The OLPAiRS Logic Design facilities provide extensive

mathematical/graphical techniques for allowing the user to tailor

decision logic to the structure of the class data. In general,

pattern classification is undertaken following a pattern analysis

conducted on each of the data classes for which logic is to be

designed. The purpose of this analysis is to ensure that each data

class is unimodal; that is, the vectors from each class are

clustered in one region of the measurement space. Although not

always required, the unimodality property is highly desirable in

order to ensure an effective logic design. In those cases where

the class data is found to be multimodal, our philosophy dictates

that each mode be identified and the sample vectors corresponding

to each mode be grouped as a named subclass (see Section 3.8).

Upon completion of the logic design, the decision region in the

measurement space corresponding to each subclass can be

reidentified with the original multimodal classes.

It Thould be noted at this time that there is no

straightforward well-defined procedure for designing logic.

Several combinations of algorithms may be selected to produce the

desired results. For the most part, decisions about which logic

design algorithm to use will be based on the philosophy that

between-group logic should be used to separate non-overlapping

classes, and complete within-group logic should be used to separate

statistically overlapping classes. Within these two categories of

logic, decisions about which algorithm to choose may seem

61 I

L,2 ,



USING OLPARS -- 3
LOGIC DESIGN AND EVALUATION

arbitrary, and a final decision may result through a trial and

error evoluation process. Figure '-17 shows choices of logic

design algorithms, based on the number of classes and number of

vectors in the data set. The table in the figure can serve as a

guideline for choosing a logic design algorithm.

3.10.1 Designing Logic -

In Section 3.8 the data set GRAINS was restructured to make

each data class unimodal. In Section 3.9.1.2, a measurement

reduction transformation eliminated non-essential measurements from

the data set. The reduced data set was called NGRAINS. This

section describes a procedure for designing logic using the

modified data set NGRAINS and evaluating the logic using a test

data set called, GRAINTST.

The first step* in designing logic is to create a logic tree

using the command NAMELOG. The initial logic tree will consist of

only one node with all the classes in the design data set present

at this node. Figure 3-18 shows the logic tree GRAINLOG which was

created using the data set NGRAINS. Note that all ten classes from

the data set NGRAINS are present at logic node 1 of GRAINLCG. The

logic design process will be completed when each logic nooe has

only one class present.

This assumes that the current design data set has been changed

to NGRAINS.

82



"Rule Of Thumb"

Choices Of Logic Design

*

LARGE DATA SMALL DATA
SAMPLE SAMPLE

SMALL CLASS FISHER NRSTNBR
COUNT

LARGE CLASS GROUP LOGIC NMV
COUNT THEN NRSTNBR

FISHER

* Small and large are subjective terms and are related
to the type of data and vector dimensionality. Therefore,
the analyst should decide whether the class count and data
sample is small or large.

Figure 3-17 Logic Design Choices

83



ce

('1 ~I-Q 61

000

('1U

- 0 sk

V6*

I--

CD CL

OQ

151 84



USING OLPARS -- 3
LOGIC DESIGN AND EVALUATION

3.10.2 "Eetween-Group Logic" -

Previous structure analysis on the data set NGRAINS has shown

that some classes do not overlap. Therefore, to adhere to the

basic philosophy of logic design, the next step entails using a

between-group logic design algorithm to separate the

non-overlapping classes. Figure 3-19 shows a scatter plot of an

eigenvector projection produced by the command L2EIGV. The display

also shows user-drawn boundaries which partition the display into 3

regions.

After boundaries have been drawn, the command CREATLOG is used

to create the logic and evaluate the logic using the design data

set vectors residing at the logic node (called a partial

evaluation). The confusion matrix display in Figure 3-19 shows the

results of the partial evaluati-7. The user has specified that the

rightmost region will contain classes "Wheal' and "whea"; the

middle regions will contain classes "corn", "oats", "rye", "Soy",

and "soys"; and the leftmost region will contain classes "alfa",

"klov", and "Clvr". As would be expected, two vectors were

misclassified. These vectors can be identified on the scatter plot

in Figure 3-19. The vector from class "corn" in the leftmost

region of the display, and the vector from class "whea" in the

middle region of the display are the misclassified vectors. The

overall results show that out of 293 vectors, 291 (or 99.3 percent)

were correctly classified. For our purposes the number of

correctly classified vectors is sufficient to accept the logic.

85

I "1 _



SCATTER PLOT (MEAS. 1,2) DATE: 28- AN-62 21:02:44
; s DISPLA't

w W CPEATLOG
tC T k

CSCALE

DONDY

DRASNODY

L PROJMNH

PRTIDX
Oc c / ROISPLAY'

k FgIC 3 REDRAW1

k REPROJECT

o SCALZM

(*.'1 (X>2

MINIMUM MAXIMUM CURRENT DATASET:
X: -4.6761E+01 7.0895E+91 GLOBAL SCALE OPTION: NGRAINS
Y: 3.5?47E+82 4.?788E+02 SQUARE L2EIGU t***

CONFUSION MATRIX (&TWH. GROUP LOGICj DATE: 28-JAN-82 21:84:11

REGION LOGIC DISPLAY SYMBOLS OF LOGIC NAME- GRAINLOG COISPLAY

NODE ASSOCIATED CLASSES CREATLOG

CONUEX (1) 4 Ww CSCALE
CONUEX (2) 3 corSs
EXCESS 2 akC DONDY

L 0 G I C N 0 0 E S SUMS AND PERCENTAGES DRAWBHDY
CLASS (PARENT) (CHILDREN) (CORRECT) (ERROR)
NAMES 1 4 3 i COUNT PRCHT COUNT PRCHT PROJMN

Sou 29 a 20 0 29 1080 - 8.9 PRTIDX
soys 22 a 22 a 22 180.9 a 0.0
corn 4Z a 41 1 41 97.6 1 2.4 RDISPLAY
oats 45 a 45 9 45190.8 0 .
whet 21 21 a 0 21 109.8 1 98 REDRAW
Whea 21 29 I a 29 95.2 1 4.8
Clv" 21 a a 21 21 %as.@ 9 9. REPROJECT
klov 22 a a 22 22 18.0 8 0 a
Ifa 3? a 9 37 37 19.0 e 9,0 SCALZM
re 42 a 42 a 42 100.8 0.98 SCALRET

TOTAL 293 41 171 81 291 99.3 2 8.7 SELECT
CORRECT 41 178 88
(PRCNT) 189.8 99.4 96.8
ERRORS a 1 I
(PRC4T) 8.8 8.6 1.2

LISTING OF MISCLASSIFIED UECTORS (Y/N)? 1 CURRENT DATASET:
RESULTS OK (YIN)? V OPTION: 4GRAINS

L2EIGU

Figure 3-19 Creating Between-Group Logic on 2-Space Display

86



AD-AI18 733 PAR TECHNOLOGY CORP NEW HARTFOpn NY F/6 9/2 '
ON-LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM. OLPARS VI. USE--ETC(U)

U UN 82 S E HAEN! D MORRIS

UNCLASSIFIED PAR-82-21 NLI4flllffffllEIEEEEEEEEIIEE
EEEEIIIIEEEEEE
EEEEIIIIIEEEEE
EEEEEEEIIEEEI



USING OLPARS -- 3
LOGIC DESIGN AND EVALUATION

Figure 3-20 shows the resulting logic tree. A logic node has been

created for eacti of the three regions on the scatter plot in Figure

3-19. The logic tree display shows which classes are present at

each of the newly created nodes. Logic must be designed at each of

these nodes because they all have more than one class present.

Classes "'Wheal' and "wheal' are present at logic node 4. Since

previous analysis shows that these classes do not overlap, a

between-group logic design algorithm could be used to separate

these two classes. Also, since there are only two classes present

at logic node 4, the logic design process could be simplified by

the use of a one-space algorithm.

Figure 3-21 shows a micro plot (top) of an eigenvector

projection produced by the command L1EIGV. A user-drawn boundary

partitions the display into two regions. The user has specified

that the left region contains the class "Wheal', and the right

region contains the class "wheal'. The confusion matrix display at

the bottom of Figure 3-21 shows the results of a partial evaluation

I L at logic node 4. All vectors at the logic node were correctly

classified. For each region in the micro plot, a logic node was

created (See bottom of Figure 3-23B) . Note that each of the newly

created nodes has only one class present. Therefore, logic design

along this path of the tree is complete.

87



I- 00

C.Q)
LALU

4w .. C .. , Z L a
CA soJ> ~~a ~O

~ -, U) ...J .J L
-wC Zc I 0

r0 04-4 U LJ . C) L
U. li 04 . a ~0 o 0

('4m .--

C.0w C.

OQQ

- a



MICRO PLOT (MEAS. 1) DATE: 28-JAN-82 22:46:80
W U GLOBAL SCALE BINWIDTH

UECTOR COUNTS CDISPLAY
W CREATLOG

CSCALE
16

W DBNDY

DRASNOY

12 INTENSIFY

PROJMN

PRTIOX
8 RDISPLAY

REDRAW

4 REPROJECT

SCALZM

SCALRET

SELECT(4-)1 ( 4)2

MNH v 4.8463E+e2 DIN SIZE a 1.13A+61 CURRENT DATASET:
MAX - 4.3859E+92 BINS a 3 OPTION: NGRAINS

LIEIGU **

CONFUSION MATRIX (BTWN. GROUP LOGIC) DATE: 28-JAN-82 22:47:63

REGION LOGIC DISPLAY SYMBOLS OF LOGIC NAME- GRAIHLOG 1H4WIDTH
NODE ASSOCIATED CLASSES CDISPLAY

LEFT 16 W CREATLOG
RIGHT 15 w CSCALE

L O G I C N 0 D E S SUMS AND PERCENTAGES

CLASS (PARENT) (CHILDREN) (CORRECT) (ERROR) 09HDY
NAMES 4 16 15 COUNT PRCNT COUNT PRCHT

-- -- ------ DRA BAOY
21 6 21 2i 100.8 9 i.0

WhOO 26 26 6 26 180.0 9 .8 iNTEHSIFY

TOTAL 41 29 21 41 I80.0 a 0. PROJfm#
CORRECT 20 21
(PRC.4T) 109.6 180.8 PRTIOX
ERRORS 9 Y
(PRCNT) 0.0 9.0 RDISPLY

RESULTS OK (YeH)? REDRAN

REPROJECT

SCALZM

SCALRET

SELECT

CURRENT DATASET:
OPTION: NGRAIHS
LIEIGU %$

Figure 3-21 Creating Between-Group Logic on 1-Space Display

89



USING OLPARS -- 3
LOGIC DESIGN AND EVALUATION

3.10.3 "Within-Group" Logic -

In order to complete the logic tree, logic must be designed at

nodes 2 and 3. Since both of these nodes have over'aIpping classes,

complete within-group algorithms should be chosen to design the

logic.

Logic node 2 has three classes present: "alfa", "klov", and

"Clvr". The confusion matrix display in Figure 3-19 shows (from

these three classes), a total of 80 vectors correctly assigned to

logic node 2. A class count of 3 and a vector count of 80 seems

small in comparison with the total design data set of 10 classes

and 293 vectors. Therefore, based on the guideline in Figure 3-17,

it is reasonable to use the nearest mean vector algorithm to design

logic at this node.

Logic node 3 has five classes present: "corn", "oats", "rye",

"Soy", and "soys". The confusion matrix display in Figure 3-19

shows, from these five classes, a total of 170 vectors assigned to

logic node 3. Even though the class and vector counts seem

relatively large (half the classes and more than half the vectors

from the total design data set), the Fisher pairwise logic design

algorithm can be used at this node. (Note, class "rye" could be

separated from the other classes by data partitioning).

90

jLI4 _ _ _ _ _ _ _ _ _



USING OLPAhS -- 3
LOGIC DESIGN AND EVALUATION

The confusion matrix display at the top of Figure 3-22 shows

the results of a partial evaluation at logic node 2 after Nearest

Mean Vector logic was designed at the node. The logic was designed

using the "weighted vector" distance option with no reject

distances (see the NMV command description). The resultb of the

evaluation show that 79 out of 80 vectors (98.75 percent) were

correctly classified.

The confusion matrix display at the bottom of Figure 3-22

shows the results of a partial evaluation at logic node 3 after

Fisher pairwise logic was designed at the node. The logic was

designed using one threshold and a minimum vote count of one (see

the FISHER command description). The results of the evaluation

show that 169 out of 170 vectors (99.41 percent) were correctly

classified.

Figures 3-23A and 3-238 show the completed logic tree

GRAINLOG. Notice that all lowest nodes are either reject nodes or

have only one class present.

3.10.4 Testing The Logic (Overall Logic Evaluation) -

In Section 3.6 the procedure for creating both a design data

set and a test data set was described. The top of Figure 3-24

shows the test set GRAINS2 which was created before beginning

structure analysis.

91

-1 s



PARTIAL NEAREST MEAN VECTOR EUALJATION =CP LOGIC NODE 2
LOGIC NAME: GRAINLOG DESIG1 DATA SET NAME: NGRA!NS ($X€$) MMUMO0
DIMENSIONALITY - 7

ASSIGNED CLASSES 
PRTCtl

Clvr ktov aIk RDISPLAY

Cr 31 SUMCM

ov 22
1 1 36

TRUE CLASSES

Clvt klov a)fa

romL 21 22 37
CORR 21 22 36
PRCT 180.8 188.0 97.3
EROR 8 a 1
PRCT 8.8 6.8 2.?
REJT 8 a a
PRCT 8.9 8.0 6.6

TOTAL NUMBER OF VECTORS a as
OVERALL CORRECT 79 FOR 98.75 PRCT
OVERALL ERROR I FOR 1.25 PRCT
OVERALL REJECT 9 FOR 8.89 PRCT

PRINTOUT (Y/N)? 14
ERROR LISTING (Y/N)? N CURRENT DATASET:

OPTION; HGRAINS
14NEVAL

PARTIAL PAIRWISE EVALUATION FOR LOGIC NODE 3
LOGIC NAME: GRAINLOG DESIGN DATA SET NAME: NGRAIHS (***$) FISHMOD
DIMENSIONALITY - 7

4SSIGNED CLASSES OPTIMLMOD
PRTCM

Soy sos Corf oats re

Soy 2O 9 a a RDISPLAY

sovs a 22 a a 8 SUMMCM
corn a 41 a 9
o8ts 6 a 45 8 THRESHMOD
r6e 6 8 1 41

TRUE CLASSES

Sow sos Cor oats rve

TOTL 28 22 41 45 42
CORR 20 22 41 45 41
PRCT 198.9 108.8 190.8 190.6 97.6
EROR a a 8 8 1
PRCT 8.8 8.0 8.0 8.6 2.4REJT a a 0 9 0
PRCT 6.9 6.8 0.6 6.0 9.0

TOTAL NUMBER OF VECTORS - 178
OVERALL CORRECT 169 FOR 99.41 PRCT
OUERALL ERROR I FOR 8.59 PRCT
OVERALL REJECT 8 FOR 8.60 PRCT

CURRENT DATASET:PRINTOUT (Y/N)? Y OPTION: NGRAIHSERROR LISTING (Y/N)? H PWEVAL sz*S

Figure 3-22 Within-Group Confusion Matrices

92



OLPARS LOGIC TREE GRAINLOG" DATE: 01-FES-g2 11:19:42
CLAESES PRESENT: SscowWCkar

I iL2EIGU l I' -31FISHER "J/

DESIGN DATA SET: NGRAINS (*~*>
CLASS COUNT: 18 DIMENSIONALITY: ?

OLPARS LOGIC TREE GRAINLOG" DATE: 81-FEB-82 11:29:95
CLASSES PRESENT: SscowWCkar

11

Ckd 
..

DESIGN DATA SET: HGRAINS (S*1*)
CLASS COUNT: 19 DIMENSIONALITY: 7

Figure 3-23A 'Completed' Logic Tree

93



OLPARS LOGIC TREE 'PAINLOG' DATE: 01-FEB-82 11:2a:26
CLASSES PRESENT: SscowWCkar

og .r0,,

I 31FISHERE 
_

6,

DESIGN DATA SET: NGRAINS (t**:)
CLASS COUNT: 10 DIMENSIOHALITY: 7

OLPARS LOGIC TREE 'GRAINLOG' DATE: 01-FEB-82 11:20:46
CLASSES PRESENT: SscowWCkar

"Whea"

DESIGN DATA SET: NGPAINS (t**t)
CLASS COUNT: 10 DIMENSIONALITY: 7

Figure 3-23B 'Completed' Logic Tree

9h4



OLPARS DA~TA TREE 'GRAIMSZ' DATE: 04-FE9S2 t3:44:33
ANYTHIHG

rue (19)

41fa (I?)

Clov (19)

23$* ueat (18)

Oats (20)

corn (18)

so (19)

NUMBER OF MEASUREMENTS PER VECTOR 12
CURRENT DATASET:
OPTION: GRR:NS2
ANYTHING ilt

OLPARS DATA TREE "grqitst' DATE: 28-jAN-82 23:10:45

RANK

SLCTMEAS

TRANSFRM

rue (18) UNION

Gift (1?)

Cloy (I9)

tvest (18)

oats (29)

corn (18)

soy (19)

NUMBER OF MEASUREMENTS PER VECTOR 7
CURRENT DATASET:
OPTION: gralntst
OSCRMEAS

Figure 3-24 Test Set Data Trees

95



USING OLPARS -- 3
LOGIC DESIGN AND EVALUATION

You may recall that the design data set for the logic tree

GRAINLOG is NGRAINS. NGRAINS was created by reducing the

dimensionality of the original design data set GRAINS from 12 to 7.

Since the design data set of GRAINLOG has a dimensionality of 7,

any data set used to evaluate the logic must also have a

dimensionality of 7. Thus, it will be necessary to reduce the

dimensionality of GRAINS2 from 12 to 7.

The bottom of Figure 3-24 shows a newly created tree called

GRAINTST, which will be used to evaluate the logic tree GRAINLOG.

GRAINTST was created in the same manner as NGRAINS. The DSCRMEAS

command was used to produce a rank order display. Measurements

1, 4, 8, 9, 10, 11, and 12 were selected, and a measurement

reduction transformation was performed.

There is an alternate method for eliminating measurements from

the logic design/evaluation process. Rather than reduce the design

data set dimensionality, the user may, at each logic design stage,

type in measurements to be eliminated (see Section 2.1.4). The

measurements specified are then ignored during mathematical

computations. The dimensionality of the design data set, however,

remains the same. Logic evaluation can therefore proceed without

having to reduce the test data set. This method of eliminating

measurements may be useful when a complete within-group logic is

the only logic being designed on a data set. In cases where one or

more group logics are used in the design process, this method can

96



USING OLPARS -- 3
LOGIC DESIGN AND EVALUATION

be cumbersome because the user must keep track of the measurements

which are to be eliminated at each logic design stage.

3.10.5 Reassociated Names-

Utilizing the overall logic evaluation command, LOGEVAL, any

data set may be tested against logic designed on any other data set

of equenl dimensionality. During the evaluation, vectors from the

test data set are assigned to a lowest node of the logic tree. For

completed logic trees, eacfl lowest node (excluding reject nodes)

has associated with it a design data set class name. If the data

class name for a given vector matches the name associated with the

logic node to which the vector was assigned, the vector is

considered to be correctly classified. The totals and percentages

of correctly classified vectors listed in the confusion matrix

display will only be useful if the names of the data classes on

which logic was designed are the same as the names of the data

classes being evaluated. In cases where the logic names are not

the same as the test data set names, the command REASNAME may be

used to associate new names with the logic nodes, these new names

are called reassociated names.

If reassociated names have been added to the logic tree,

LOGEVAL asks the user whether or not the reassociated names are to

be used during the evaluation. If the response is yes, the

reassociated names will be used in place of the original design

names to determine if the vectors in the data set being evaluated

have been assigned correctly.

97



USING OLPARS -- 3
LOGIC DESIGN AND EVALUATION

As mentioned previously, the GRAINTST data set will be used to

evaluate the logic tree GRAINLOG. The class names in GRAINTST are

identical to the class names in GRAINLOG's design data set before

it was restructured into subclasses. Because the original data set

was restructured, before logic was designed, the classes "Cloy",

"weat", and "soy" which exist in GRAINTST are not represented in

the logic tree GRAINLOG. Therefore, logic nodes in GRAINLOG which

are currently associated with subclass names (from the

restructuring process) should be reassociated with the original

class names.

Figure 3-25 is a table of logic node numbers, original aesign

data set class names, and reassociated class names for the logic

tree GRAINLOG. The table was produced by the REASNAME command.

Notice that logic nodes 16 and 15, associated with classes "Whea"

and "whea" respectively, have been reassociated with the class name

"weat"; logic nodes 6 and 7, associated with "Soy" and "soys",

respectively, have been reassociated with the class name "soy", anrj

logic nodes 12 and 13 associated with classes "clvr" and "klov"

respectively, have been reassociated with the class name "Cloy".

During an overall logic evaluation, these reassociated class names

will be used to determine if the vectors in GRAINTST have been

correctly classified.

98



C. Ix

z I
MO.=

-)C

P-I I

ww o cm - -

wL) I V

w I>

I- m I

W&I

CJ I

~-4z 1



USING OLPARS -- 3
LOGIC DESIGN AND EVALUATION

3.10.6 Accepting Cr Rejecting A Logic Cesign-

Figure 3-26 is a confusion matrix display which summarizes the

results of an overall logic evaluation in which the GRAINTST data

set was tested against the GRAINLOG logic. T'e results show that

125 out of 129 vectors (96.90 percent) were correctly classified, J4

vectors (3.10 percent) were incorrectly classified, and no vectors

were rejected.

At this point, based on the confusion matrix statistics, the

analyst decides whether or not the logic is good enough to use in

the design of a classification system for the particular type of

data under consideration. As an analyst, you may want to design

several different logics and compare the evaluation results in

order to decide which logic is most suitable. There will probably

be certain criteria that the logic must meet in order for it to be

considered a viable solution to a particular problem. Some factors

to consider in deciding whether to accept or reject a particular

logic is discussed in the following text.

(1) Speed versus number of errors -

For any logic, the amount of time it takes to classify a
vector is related to the dimensionality for the vector and
the number of data comparisons that must be made (i.e., the
complexity of the logic) . In general, the more complex a
logic is, and the greater the dimensionality of the vectors
being classified, the longer the classification will take.
On the other hand, less complex logics and a smaller vector
dimensionality tend to produce more errors. Thus, there is
a tradeoff in terms of how fast the answer is produced , and
the probability that the answer is correct, therefore, you
must determine which factor, speed or number of errors is
more relevant to your particular problem.

100



OVERALL EVALUATION

LOGIC NAME - GRAINLOG
DESIGN DATA SET HAKE - NGRAINS ($W)
CURRENT DATA SET NAME - graintst (MS)
DIMENSIOIALITY - 7

ASSIGNED CLASSES

so sow corn oats weat weat Cloy Cloy alfa me RJCT

soY 9 10 0 0 0 0 0 0 0 0 0
corn 0 0 18 0 0 0 0 0 0 0 0
oats 0 0 0 20 0 0 0 0 0 0 0
weat 0 0 0 0 10 8 0 0 0 0 0
Cloy 0 0 0 0 0 0 7 10 2 0 0
alfa 0 0 0 0 0 0 0 0 17 0 0
me 0 0 0 1 0 0 0 0 0 17 0

OVERALL EVALUATION

LOGIC WE - GRAINLOG
DESI6H DATA SET NAME - NGRAINS (M*)
CURRENT DATA SET WAME - graintst ($M$*)
DIiENSIONALITY - 7

TRUE
CLASS soy corn oats weat Cloy alfa rue

TOTW 19 18 20 18 19 17 18
CORR 19 tO 20 18 17 17 17
PRCT 100.0 100.0 100.0 100.0 89.5 100.0 94.4
EROR 0 C 0 p 2 0 1
PRCT 0.0 0.0 0.0 0.0 10.5 0,0 5.6
REJT 0 0 0 0 0 0 0
PRCT 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TOTAL UNBER OF VECTORS a 129
OVERALL CORRECT 126 FOR 97.67 PRCT
OVERALL ERROR 3 FOR 2.33 PRCT
OVERALL REJECT 0 FOR 0.00 PRCT

Figure 3-26 An Overall Logic Fvaluation

101

,.l,' , _



USING OLPARS -- 3
LOGIC DESIGN AND EVALUATION

(2) 'What is the effect (cost) of an error?-

In the logic evaluation example previously described, one
vector from class "corn" was classified as "Cloy" (See
Figure 3-1 9). The analyst needs to determine the
importance of' such an error if it occurs in a real world
situation. For certain data problems, an error may not be
critical. If, for instance, "corn" and "Cloy" were both
going to receive the same fertilization treatment after
classification, the fact that a group of "corn" vectors are
classified as "Cloy" is insignificant. If, however, the
two classes were to receive different fertilization
treatments, and the treatment applied to "Cloy" crops would
damage "corn" crops, then incorrectly classifying a group
of "corn" vectors would have more serious consequences.

As another example, consider the problem of separating
"sick" people from "healthy" people. To classify a healthy
person as sick may not be a serious mistake , but to
classify a sick person as healthy may prevent that person
from seekin- medical attention. Clearly, the consequences
of such an error could be very grave.

(3) Rejecting vectors versus misclassifying them-

In order to minimize the probability of occurrence of
certain types of errors in the real world, the analyst may
decide that these errors should not be allowed to occur in
the logic design/ evaluation process. Certain errors may
sometimes be eliminated by specifying (or increasing the
size of) reject regions. In effect, a reject region
mathematically defines an area surrounding a class. In
order for vectors to be assigned to a class, they must fall
within the reject region. Vectors which do not fall within
the reject region of a class (to which they would otherwise
be assigned) are classified as "unknown" objects.

The advantage of specifying reject regions is that it
reduces the number of errorr in the logic. The
disadvantage, however, is that some vectors, which would

F have been correctly classified without specifying reject
regions, may be rejected. Consequently, you must decide
which set of circumstances is best for a particular data
problem; rejecting "known" objects, or misclassifying

"unknown" vectors.

102



USING OLPARS -- 3

LOGIC DESIGN AND EVALUATION

3.10.7 Viewing Your Logic-

As an OLPARS user, you can obtain a printed listing of the

decision logic via the command PRTLOG. The logic can be used to

program the corresponding decision algorithm to be used for pattern

classification. Remember, OLPARS is not a pattern classification

system; rather it is a research tool which is used to design

pattern classification systems.

3.11 SUMMARY

Section 3 of the OLPARS user manual has been designed to

introduce a new user to the capabilities available in OLPARS.

Following is a brief summary of the procedures described; analysis

of data, evaluation of measurements, data transformations, and

logic design and testing.

The user collects data which represents a "real world"

environment. The data is translated into a vector format which can

be interpreted by OLPARS. Each vector component is a feature in

the environment. Each vector represents an object in the

environment and belongs to a data class, which is considered an

environmental state. The user attempts to define features which

will yield information to aid in discriminating between the various

environmental states (feature extraction).

103



USING OLPARS -- 3
S UM MAR Y

Once the data is in the "proper" format, the user may "log in"

to OLPARS and create a data tree. Remember, some time before

designing logic, this original data set must be divided into two

new data sets, one for designing logic, and one for evaluating

(testing) the logic (Note, this step is not necessary if a test set

has been collected separately from the design set).

The next step, after creating a data tree, is to begin

analysis of the data. Initially, if the data vectors are not

comprised of true features, but "raw" measurements, it is desirable

to examine the statistical properties of the data to help derive

useful feature vectors. The statistical information that can be

viewed consists of data ranges and measurement overlap, data means,

standard deviations, covariance matrices, and correlation matrices.

This type of analysis could be useful for identifying data

collection or translation errors. Also, the ranges and overlap

graphs are useful in identifying features which distinguish classes

from one another.

Following a visual examination of the raw measurements and

statistics, the structure of the data can be studied using the

OLPARS structure analysis commands. The purpose of structure

analysis is to search for clusters in the data and to identify

multimodal classes. If multimodal classes are found to exist, they

are divided (restructured) into subclasses.

104J



USING OLPARS -- 3
SUMMARY

If' the data set is in excess measurement mode (see Section

2.1.3), or if the user wishes to reduce the vector dimensionality

of the data set in order to speed up OLPARS calculations, the

measurement evaluation commands can be used to determine and select

the "best" class discriminating measurements, and to transform the

original data set into a new one containing only the "selected"

measurements. If the data set is in excess measurement mode,

measurement evaluation will most likely precede structure analysis,

because only the coordinate projection commands operate in excess

measurement mode.

Other data transformations available to an OLPARS user include

normalization, eigenvector, and measurement transformations. The

normalization transformation is used essentially to rescale the

data; the eigenvector transformation is used to transform the

original vectors into a user-defined eigenvector subspace; and the

measurement transformation is used to define new features by

combining or altering the original features. Both the eigenvector

and the measurement transformations can be used to reduce the

dimensionality of the data set.

After performing structure analysis and/or measurement

evaluation/transformation on the data, the user is ready to design

the recognition logic which will classify the various states of the

environment, using the selected features of the design data set.

Basically, the between-group logic commands should be used to

separate non-overlapping classes, and the complete within-group

logic commands should be used to separate statistically overlapping

105



USING OLPARS -- 3

SUMMARY

classes.

When the logic design process is complete, the logic can be

evaluated using the test data set. Remember that any measurement

transformation/reduction that was performed on the design data set

must also be applied to the test data set. Also, before an overall

logic evaluation is performed, each subclass should be

re-identified with. the original multimodal classes by using the

"reassociated names" (REASNAME) command.

Lastly, based on the eveluation results, the user must decide

whether the logic should be accepted or rejected for use in the

design of a classification system. If the user accepts the logic,

it can be printed at the lineprinter. If the user rejects the

logic, it may be necessary to reiterate the entire procedure, using

different features and/or different OLPARS algorithms, in an

attempt to design "better" logic.

It is important to realize that the analysis/logic design

procedure for the data set GRAINS, described previously, is

intended to be an example (guideline) for a novice CLPARS user. It

is not the only way to design pattern classification logic. Once

you become familiar with your data, and the OLPARS algorithms, you

can develop your own methods for creating logic.

106



SECTION 4

OLPARS CCMMANDS

4.0 GENERAL STRUCTURE

The command structure represents the primary interface between

CLPARS and the user. OLPARS consists basically of a filing system

and a collection of individual programs that operate on data in the

fi.es to perform pattern recognition functions. Often there are

several commands (or algorithms) for performing a particular

function; for a particular set of data, one program may prove more

satisfactory than another. Also, certain functions may be

accomplished by executing a sequence of commands in which, after

the first command is completed, the user must select the most

appropriate "next-command" (from a list of meaningful options)

based on his/her data and problem being investigated.

Thus it should be clear that OLPARS requires a user who

understands the principles of pattern recognition, the mathematical

significance of the various programs to be choosen, the data being

evaluated, and the problem. What this user requires of OLPARS is a

system with a command structure which provides simplicity of

operation, responsiveness, and flexibility.

107 I.



OLPAhS COMMANDS -- 4
GENERAL STRUCTURE

The command structure of "portable" OLPARS is completely

flexible and structurally free; that is, when the system is

expecting an OLPARS command, any command may be entered -- there is

no forced hierarchical structure imposed. This freedom, however,

is often more apparent than real because it is only meaningful to

select certain commands at particular points in the pattern

recognition process. (The system design includes a feature of

presenting the user with a list or menu of commands that are the

most reasonable to use after the completion of any individual

command)

Since CLPARS consists of a large number of commands, it is

quite natural in a discussion of the commands and command structure

to categorize the commands into groups. The categori.zation is

somewhat arbitrary because of their variety, the ways in which they

may be combined in sequences, and the cross usage of some commands

in different pattern recognition functions.

In the categorization scheme used here, there are two basic

divisions of commands: Utility Commands and Analytic commands.

The _Utility category has three subcategories: Data Manipulation,

Display- Manipulation, and Information. These commands---are

self-contained entities, each independent, and are used in any

order which the user determines to be appropriate.

The Analytic commands conjist of programs which implement the

principal pattern recognition algorithms of OLPARS. This category

has four subcategories: Measurement Evaluation, Transformations,

108



OLPARS COMMANDS -- 4
GENERAL STRUCTURE

Structure Analysis, and Logic Design. The Logic Design category is

further subdivided into two groups, between-group logic commands

and within-group logic commands.

An important distinction between the commands in the Utility

category and the Analytic category is that most Analytic commands

have an appropriate set of subsidiary commands associated with

them. These subsidiary commands implement various options related

to a particular Analytic command, and as a result, there is the

implied hierarchy of commands; that is, it is only meaningful to

call a subsidiary command after its related Analytic command has

been executed.

Figure 4-1 is a schematic illustration of the command

categorization as previously mentioned. Figure 4-2 is a list of

all currently implemented OLPARS commands in their respective

categories. The following section gives an alphabetically ordered

list along with a brief description of each of the commands,

109



DATA DISPLAY

MANIPULATION MANIPULATION INFORMATIONAL

UTILITY

COMMANDS

OLPARS

l1

ANALYTIC

COMMANDS

TI MEASUREMENT STRUCTURE LOGIC
TRANSFORMATION EVALUATION ANALYSIS DESIGN

SUBSIDIARY COMMANDS

FIGURE 4-1 COMMAND CATEGORIES IN OLPARS

110



Currently implemented OLPARS functions

Logic Structure -Utilities-
Design Analysis (data) (display) (info.)

(b-group) (data tree) (1-space) ANYTHING
LIASDG APPEND BINWIDTH BYEOLP
LZASDG COMNOD INTENSIFY CDEFAULT
L1CRDV 'S1CRDV CRANDTS DTRENAME
L2CRDV *S2CRDV DDATANOD (1.2- pace) HELP
L1EIGV S1EIGV DDATATREE CDISPLAY LISTLOGS
L2EIGV S2EIGV DDS(JBSTR CSCALE LISTREES
L2FSHP S2FSHP DRAWTREE DBNDY LTRENAME
CREATLOG RESTRUCT DVEC DRAWBNDY MATRIX

*FILEIN PROJMN PRTCM
(w-group) Meas. Eval. #FILEOUT PRTIDX 'PRTDS
FISHER & Transform MAKETREE. REDRAW PRTLOG
FISHMOD -- - -MOVEC REPROJECT RDISPLAY
OFUIMLMOD *DSCRMEAS SCALRET SETDS
THRESHMOD *RANK (logic tree) SCALZ4 SETLOG
PWEVAL 'SLCTMEAS DLOGTREE SELECT SUMMCM

*TRANSFORM DLSUBSTR
NMV *UNION DRAWLOG
NMVMOD NAMELOG
NMEVAL EIGNXFRM REASNAME

MATXFRM
NRSTNBR *MEASXFRM can be used in
NNMOD NORMXFRM Excess Measurement Mode
LOGEVAL

Figure 4-2 OLPARS Command Categories



OLPARS CCMMANDS -- 4
COMMAND SUMMARY

4. 1 COMMAND SUMMARY

ANYTHING - Display available OLPARS commands.

APPEND - Append a data tree node from one tree to another
tree.

BINWIDTH - Alter the bin size of a one-space display.

CDEFAULT - Change default setting of OLPAR system entities.

CCISPLAY - Change the current one-space macro display to a
one-space micro display, or vice versa

-OR-

Change the current two-space cluster plot to a
two-space scatter plot, or vice versa.

COMNOD - Combine two or more lowest nodes in a data tree.

CRANDTS - Create a random data test set.

CREATLOG - Create "between-group" logic for one-space or
two-space projections.

CSCALE - Change the scaling of a one-space/two-space display
from "square" to "rectangular" and vice-versa.

DBNDY - Delete existing boundaries drawn on a
one-space/two-space display.

DDATANOD - Delete a lowest node from a data tree.

DDATATREE - Delete a data tree from user directory.

DDSUBSTR - Delete data tree substructure.

DLOGTREE - Delete a logic tree from user directory.

DLSUBSTR - Delete logic tree substructure.

DRAWBNDY - Partition a one-space/two-spice projection for data
restructuring or "between-group" logic generation.

DRAWLOG - Display the structure of a logic tree.

DRAWTREE - Display the structure of a data tree.

112

'I I IlBi



OLFAkS CCMMANDS -- 4
CCMMAND SUMMARY

DSCRMEAS Compute measurement evaluation statistics anc
present an "overall" ranking of measurement
discriminating power.

DTRENAME - Rename an CLPARS data tree.

DVEC - Delete vectors from a data class.

EIGNXFM - Transform a data set (creating a new data set) by
projecting it into a subspace determined by a suoset
of its eigenvectors.

FILEIN Create an OLPARS data tree from a text file data
vectors.

FILEOUT Place data tree vectors into a text file.

FISHER - Create Fisher pairwise discriminant logic a node of
a logic tree.

FISHMCD - Modify the vote or thresho.d count of a logic nod,.

HELP - Provide help on an CLPARS command or subject.

INTENSIFY - intensify or highlight user specified classes a
one-space micro display.

LIASLG - One-space assigned discriminant group (cn group
defined Fisher discriminant) for logic design.

L1CREV - One-space coordinate projection for logic design.

L1EIGV - One-space eigenvector projection for logic design.

L2ASDG - Two-space assigned discriminant group projection (on
plane defined by group determined Fisher
discriminant and Fisher orthoganal) for logic
design.

L2CRDV - Two-space coordinate projection for logic design.

L2EIGV - Two-space eigenvector projection for logic design.

L2FSHP - Two-space Fisher discriminant projection (on plane
defined by two Fisher discriminants; the Fisher
discriminants are based on user specified class
pairs) for logic design.

LISTLOGS - Display user logic tree names.

LISTREES - Display user data tree names.

LOGEVAL - Evaluate a data set against a logic tree.

113

Lo 'I



CLPARS CCMMANDS --
CCMMAND SUMMARY

LTRENAME - Rename an LLPARS logic tree.

MAKETREE - Create a data tree using nodes from existing data
trees.

MATRIX - Utility for maintaining the saved transformation

matrix file.

MEASXFRM - User specified data measurement transformation.

MOVEC - Move vectors in a two-space coordinate projection
(meant for generating reference patterns for Nearest
Neighbor logic).

NAMELOG - Create a new logic tree.

NMEVAL - Evaluate a Nearest Mean Vector logic node.

NMV - Create a Nearest Mean Vector logic node.

NMVMCD - Modify logic at a Nearest Mean Vector logic node.

NNMCD - Modify logic at a Nearest Neighbor logic node.

NORMXFRM - Transform a data set (creating a new data set) to
"normalized" measurements by dividing each
measurement by the overall standard deviation of
that measurement.

NRSTNBR - Create a Nearest Neighbor logic node (and a Nearest
Neighbor reference pattern tree).

OPTIMLMOD - Create/modify optimal discriminant logic at a Fisher
logic noae.

PROJMN - Display mean vector of projected data class )n the
one-space/two-space display.

PRTCM - Print confusion matrix.

PRTDS - Print data set vectors and statistics.

PRTIDX - Print vector identifiers and vector quantities.

PRTLOG - Print logic tree information.

PWEVAL - Evaluate a Fisher pairwise logic node.

RANK - Rank data measurements according to user selected
ranking method.

RDISPLAY - Redisplay a one-space, two-space or confusion matrix
display.

114 1 1'4

I I I I I I I I I



OLPARS CCMMANDS -- 4
CCMMAND SUMMARY

REASNAME - Modify the reassociated class names in a logic tree.

REDRAW - Display an existing one-space threshola or two-space
boundary.

REPROJECT - Choose different projection vectors for eigenvector
projection displays already generated.

RESTRUCT - Restructure (subdivide) one class in a data tree.

SICRDV - One-space coordinate projection for structure
analysis.

S1EIGV - One-space eigenvector projection for structure
analysis.

S2CREV - Two-space coordinate projection for structure
analysis.

S2EIGV - Two-space eigenvector projection for structure
analysis.

S2FSHP - Two-space Fisher discriminant projection (on plane
defined by two Fisher discriminants; the Fisher
discriminants are based on user specified class
pairs) for structure analysis.

SCALRET - Return a one-space/two-space display to its original
display scale.

SCALZM - Change display scale of a one-space/two-space
display by "zooming in" on a subset of the current
display (a view magnification).

SELECT - Select class symbols to be displayed on a
one-space/two-space display.

SETDS - Select the "current" data set.

SETLOG - Select the "current" logic.

SLCTMEAS - Manual measurement selection performed by user on a
rank order display; used in subsequent data
selection/tree transformation.

SUMMCM - Display confusion matrix summary.

THRESHMOD - Modify thresholds in Fisher logic node.

TRANSFRM - Transform existing tree (creating a new tree) by
using algorithmic or user specified "selected"
measurements of a rank order display.

115



OLPARS COMMANDS -- 4
CCMMAND SUMMARY

UNION - Algorithmic selection of measurements in a rank
order display for data set transformation; selects
meaaurement(s) which are the "best" discriminators
for any class or class pair.

4.2 COMMAND DESCRIPTIONS

This section contains descriptions of commands that can be

executed in OLPARS. The general format of the command description

is given in Figure 4-3. If a particular item of the format does

not pertain to a command (e.g., an example is not given because

there is no user interaction), the item is omitted from the

description or is followed by the word "NONE".

116



COMMAND NAME:

The name used to activate the command

CATEGORY:

The command categorization types:
Utility command
Measurement Evaluation command (subsidiary)
Structure Analysis command (subsidiary)
Logic Design command (subsidiary)
Transformation command

FUNCTIONAL DESCRIPTION:

A functional description of the command

USER INTERACTION:

Program requests, responded to by the user

EXAMPLE (S)

One or more examples of running the command
at a terminal are given here. Note: text
between slashes denotes User responses.
The OLPARS standard exit is represented by
/<CR>/ immediately following a user prompt,
unless otherwise noted.

Session with SHORT prompts

User prompts that occur when the prompt
flag in the CM file indicates "short prompts"
are shown here.

(PROMPT NOTES: *0***i**U*I**i**
A further explanation of user interaction is
given here. The reader is informed of any
errors that may occur as a result of an
incorrect response to a prompt or an OLPARS
filing system error. Anything extra that
the user might need to know is explained here.

Session with LONG prompts

User prompts that occur when the prompt flag
in the CM file indicates "long prompts" are
shown here.

Figure 4-3 OLPARS Command Description Format

117

q'



OLPARS COMMANDS -- r
CCMMANID DESCRIPTIONS

OLPARS COMMAND DESCRIPTIONS

118



AN YT HI N G

COMMAND NAME: ANYTHING

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

ANYTHING displays the names of all the currently
available OLPARS commands.

USER INTERACTION: NONE

I

1 J

, 4 *j



A PPEND

COMMAND NAME: APPEND

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

APPEND adds one node from a source tree to another

tree ( or the same tree).

USER INTERACTION:

The user is asked for the node names of two trees(the
names may be the same). The first name the user gives
to the program specifies the source tree (the tree
from which the new node is to be obtained). The second
name specifies the receiving tree ( the tree to which
the node is to be appended).

The user is then requested for the names of two
nodes. The first node will be the source node, the
second will be the receiviig node.

Next the user is asked for a new name for the node
that is being appended. Lastly , the user is asked if
the vector identifiers of the appended node are to be
resequenced.

EXAMPLE(S):

In the following examples GRAIN I and GRAIN2 are data
trees. GRAINI has nodes RYE, CORN, CLOV, and WHEA
all under the senior node. GRAIN2 has nodes ALFA,
and CORN. The node RYE will be appended to GRAIN2
under the senior node.

Session with SHORT prompts

SOURCE TREE? /GRAIN1/

RECEiVING TREE? /GRAIN2/

SOURCE NODE? /RYE /

RECEIVING NODE? /****/

NEW NAME? /CORN/

NOT A UNIQUE NAME
NEW NAME? /RYE/

120



AFPEND (continued)

RESECUENCE VECTOR IDENTIFIERS(Y,N)? /N/

(PROMPT NOTES:

The source node that is entered by the user must be
a lowest node. The receiving node entered by the
user must be an intermediate node. If not, proper
error messages will be displayed. As shown above,
the new name that is entered must be unique. Also,
the display symbol must be unique.

** *************************** *************************)

Session with LONG prompts

ENTER THE NAME OF THE SOURCE TREE
(MAXIMUM 8 CHARACTERS)? /GRAINI/

ENTER THE NAME OF THE RECEIVING TREE
(MAXIMUM 8 CHARACTERS)? /GRAIN2/

ENTER THE NAME OF SOURCE NODE
(MUST BE A LOWEST NODE, MAX 4 CHARACTERS)? /RYE/

ENTER THE NAME OF THE RECEIVING NODE
(MUST BE INTERMEDIATE NODE, MAX 4 CHAR)? /***/

ENTER A NEW NODE NAME OF THE NODE BEING APPENDED
(MAXIMUM 4 CHARACTERS)? /RYE/

DO YOU WANT TO RESEQUENCE THE VECTOR IDENTIFIERS
IN THE NODE YOU ARE APPENDING(Y,N)? IN!

121



B INW IDTH

COMMAND NAME: 5INW IDTH

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

BINWIDTH will first determine whether the current
display is a valid one-space display. If it is a
one-space display, the scale is modified by either
changing the starting point, the number of bins,
and/or the interval size.

USER INTERACTION:

You are first asked if the minimum scale value is to
be changed (the starting 'x' point of the display).
Then you are asked if the number of bins is to be
changed. Lastly you are asked if the interval (bin
size) is to be changed. These can be answered in
any way, all yes, all no, or any combination of
the three. If you do not alter a scale value, its
value will remain the same.

EXAMPLE(S):

In the following one-space prompt you will see the
fullest amount of prompts possible. This is because
yes ('Y') will be answered to all the change prompts.
The number ten '10' will be entered as the new min-
imum scale value, '20' as the new number of bins,
and '25' as the new binsize. The current minimum
scale value will be 1, current number of bins will be
14, and the current binsize will be 58.34.

Session with SHORT prompts

CURRENT MINIMUM VALUE IS ** 1.000 **
CHANGE MINIMUM SCALE VALUE (Y/N)? /Y/
ENTER NEW POINT - /10/

CURRENT NUM. OF BINS IS ** 14
CHANGE NUMBER OF BINS (Y/N)? /Y/
BINS - /20/

CURRENT BINSIZE IS ** 58.34 *
CHANGE BINSIZE (Y/N)? /Y/
BINSIZE - /25/

122

2 ___________________________________



BINWIDTH (continued)

(PROMPT NOTES: *

If you wish to change the number of bins, the number
entered must be greater than zero. If a number less
than zero is entered, a message is printed at the
terminal, and you are prompted for another number.

If the minimum scale value is changed, the number
of bins is not, and you wish to change the binsize,
a message will be printed at the terminal with the
smallest binsize that can be entered. If a number
less than the given number is entered, the number
of bins is set to the maximum number of bins (50),
and the binsize is set to the number displayed at
your terminal as the smallest allowable binsize.

If the classes are all grouped together near the
minimum value, and you would like to see them spread
out, you should:

1) allow the minimum scale value to remain
the same

2) decrease the number of bins
3) decrease the binsize

123



BINWIDTH (continued)

The following is a table showing what happens to each
value when you enter either 'yes' or 'no' to the
prompt.

xmin - the minimum scale value

xmax - the maximum scale value

# bins - the total number of bins

bin - the b.nsize (interval size)

mod - this variable was recalculated by the computer

ent - this variable has the value you entered

same - variable value remains the same

xmin #bins binsize xmin #bins binsize xmax

Y Y Y ent ent ent mod
Y N N ent same same same
Y Y N ent ent same mod
Y N Y ent same ent mod

N N N same same same same
N Y Y same ent ent mod
N Y N same ent same mod
N N Y same same ent mod

Formulas for finding the modified variables

mod xmax -------- > ( # bins * binsize) + xmin

124

LI



BINWIDTH (continued)

Session with LONG prompts

CURRENT MINIMUM VALUE IS ** 1.000 *
DC YOU WANT TO CHANGE THE STARTING POINT OF THE
DISPLAY (MINIMUM SCALE VALUE) Y-N ? /Y/
ENTER THE NEW MINIMUM POINT
FOR THE DISPLAY - /10/

CURRENT NUM. OF BINS IS ** 14 **
DO YOU WANT TO CHANGE THE NUMBER OF BINS
IN DISPLAY (Y/N)? /Y/
ENTER THE NUMBER OF BINS FOR THE DISPLAY - /20/

CURRENT BINSIZE IS ** 58.34 *
DO YOU WANT TO CHANGE THE INTERVAL(BIN) SIZE(Y/N) /Y/
ENTER A NUMBER FOR THE NEW BINSIZE - /25/

125



BYEOLP

CCMMAND NAME: BYEOLP

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

BYEOLP's sole purpose is to "logout" or exit OLPARS.
What other functions this command may perform is
left to the local implementation.

USER INTERACTION:

Left to local implementation.

126



CEEFAULT

CCMMAND NAME: CLEFAULT

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

CEEFAULT first reads the current values from the
Communications (CM) File and displays them for the user
(cluster/scatter cut-off value, one-space bin factor,
prompt flag, instrumentation flag and instrumentation
threshold value). CDEFAULT then puts up a list of options
and asks the user to select one. By selecting the
appropriate option, the user may (1) change the
cluster/scatter cut-off value, (2) change the one-space bin
factor, (3) change from long prompts to short prompts or
vice versa, (4) change the instrumentation flag from 'ON'
to 'OFF' or vice versa, (5) change the instrumenta- tion
tnreshold value, or (6) set default values for the CM file
parameters mentioned in I,2,3,4 and 5 above. The effects
oi changes in these options are as follows:

Option 1: If the number of vectors in a data set "o be projected
on a two-space plot is greater than the cut-off value, a
cluster plot is displayed, otherwise a scatter plot is
shown. If option 1 is selected, the program requests
that a new value be input. Example: if the cut-off
value were set to zero, all two-space plots would
initially be displayed in the cluster mode.

Option 2: The initial number of bins for a histogram plot is
determined by dividing the total number of vectors by
the product of the number of classes and the one-space
bin factor. If option 2 is selected, the program
requests that a new bin factor value be entered.
Example: if the number of classes is 1, the bin factor
is set to 2, and the total number of vectors is 100,
these vectors will be placed in 100/(1*2) 50 bins.

Option 3: The default value of the prompt flag is 0 - use short
prompts. By changing to long prompts (flag = 1), the
user receives longer messages requesting information.

127



CLEFAULT (continued)

Option 4: The default value of the instrumentation flag is C-
disable (turn off) instrumentation. By changing the
instrumentation flag to 1, the instrumentation is
enabled (turned on). (Note, with instrumentation turned
on, program execution time will increase dramatically.)

Option 5: The default value of the instrumentation threshold is 5.
if instrumentation is 'ON', a program must have
completed successfully at least 5 times in order to turn
off the printing of debug information. (To force out
all instrumentation, set the threshold to zero.)

Option 6: If option 6 is selected, the cluster/scatter cut-off
value is set to 500, the one-space bin factor is set to
5, the prompt flag is set to 0, the instrumentation flag
is set to 0, and the instrumentation threshold is set to
5.

CDEFAULT continues to prompt the user for an option number
until a carriage return (<CR>) is typed.

USER INTERACTION:

The user is asked to select an option number from the list
of options. If option 1 is selected, the user is asked for
the new cluster/scatter cut-off value. If option 2 is
selected , the user is asked for the new one-space bin
factor. If option 3 is selected, the user is asked for the
new instrumentation threshold value.

EXAMPLE(S):

Session with SHORT prompts

CURRENT STATUS OF CM FILE PARAMETERS:
CLUSTER/SCATTER CUTOFF VALUE 100
ONE-SPACE BIN FACTOR =2
PROMPT FLAG =SHORT
INSTRUMENTATION FLAG =ON
INSTRUMENTATION THRESHOLD 3

PROGRAM OPTIONS:

128



CEEFAULT (continued)

CHANGE:
I. CLUSTER/SCATTER CUTOFF VALUE
2. ONE-SPACE BIN FACTOR
3. PROMPT FLAG
4. INSTRUMENTATION FLAG
5. INSTRUMENTATION THRESHOLD

OR:
6. SET DEFAULT VALUES

OPTION NUMBER =/6/

CURRENT STATUS OF CM FILE PARAMETERS:
CLUSTER/SCATTER CUTOFF VALUE = 500
ONE-SPACE BIN FACTOR = 5
PROMPT FLAG = SHORT
INSTRUMENTATION FLAG = OFF
INSTRUMENTATION THRESHOLD = 5

PROGRAM OPTIONS:

CHANGE:
1. CLUSTER/SCATTER CUTOFF VALUE
2. ONE-SPACE BIN FACTOR
3. PROMPT FLAG
4. INSTRUMENTATION FLAG
5. INSTRUMENTATION THRESHOLD

OR:
6. SET DEFAULT VALUES

OPTION NUMBER =/<CR>/

(PROMPT NOTES:

Option Number -

The program stays in prompt mode until a
valid option number (1-.6) is typed. Typing
<CR> causes the program to exit.

Cluster/Scatter Cut-Off Value -

If this value is negative, the program stays
in prompt mode.

One-Space Bin Factor -

If this value is negative, the program stays
in prompt mode.

Instrumentation threshold

If this value is negative, the program stays
in prompt mode.

129

l i I I I I i i " n i



CLEFAULT (continued)

Note: If the user changes the prompt mode while
running CUEFAULT, CLEFAULT will still put
out prompts according to the prompt mode
that was in effect when CCEFAULT began
execution.

Session with LONG prompts

CURRENT STATUS OF CM FILE PARAMETERS:
CLUSTER/SCATTER CUTOFF VALUE = 500
ONE-SPACE BIN FACTOR = 5
PROMPT FLAG = LONG
INSTRUMENTATION FLAG = ON
INSTRUMENTATION THRESHOLD = 5

PROGRAM OPTIONS:

C HA NGE :
1. CUTOFF
2. BIN FACTOR
3. PROMPT FLAG
4. INSTRUMENTATION FLAG
5. INSTRUMENTATION THRESHOLD

OR:
6. SET DEFAULT VALUES FOR 1,2,3,4, AND 5 ABOVE

(500,5, SHORT, OFF,5)

OPTION =/4/

CURRENT STATUS OF CM FILE PARAMETERS:
CLUSTER/SCATTER CUTOFF VALUE = 500
ONE-SPACE BIN FACTOR = 5
PROMPT FLAG = LONG
INSTRUMENTATION FLAG = OFF
INSTRUMENTATION THRESHOLD = 5

PROGRAM OPTIONS:

CHANGE:
1. CUTOFF
2. BIN FACTOR
3. PROMPT FLAG
4. INSTRUMENTATION FLAG
5. INSTRUMENTATION THRESHOLD

OR:
6. SET DEFAULT VALUES FOR 1,2,3,4, AND 5 ABOVE

(500,5, SHORT, OFF, 5)

OPTION =/<CR>/

130

J| - ...



CLISPLAY

COMMAND NAME: CDISPLAY

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

If the current display is a two-space scatter
plot, CLISPLAY changes the display to a two-
space cluster plot, and vice versa. If the
current display is a one-space macro plot,
CDISPLAY changes the display to a one-space
micro plot, and vice versa.

USER INTERACTION: NONE

(NOTES:

If the display code in the DI file is not cluster or
scatter, or macro or micro, the message "THE DISPLAY
FILE DOES NOT CONTAIN A ONE- OR TWO-SPACE DISPLAY"
is printed at the user's terminal.

131



COMNOD

COMMAND NAME: COMNOD

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

COMNOD combines two or more lowest nodes which exist on the
same level and which share a common node directly above
them. Because the common node must be exactly one level
above whatever lowest nodes to combine, we can say that
nodes to combine must have the same 'parent' node. It is
not necessary for all 'children' of the parent to be lowest
nodes; children that are not lowest nodes (children that
have their own children) may not be combined.

USER INTERACTION:

COMNOD asks you first for the name of the tree which has
the nodes you want combined. It then asks you for the name
of the parent node of the nodes you want combined. If you
select a legal parent, you will see displayed a list of
names of children you may combine. This list is labeled
'CLASS SELECT LIST'.

Each name within the list begins with a unique character,
the 'class symbol'. You must now enter the class symbols
of the nodes you want to combine (see PROMPT NOTES to see
three ways of entering class symbols). If your input is in
any way not acceptable, COMNOD tells you why and lets you
respond again.

COMNOD now asks you for the name of the new node which will
be the combination of the nodes you have selected. This
name may be the same as any of the nodes combined, or it
may be new, whereupon it will be checked for uniqueness
among the entire tree structure. If the new name and class
symbol are not unique, you will be told why and asked to
enter another new name.

Once COMNOD finds the new name acceptable, you will be
asked if you want resequencing of the vector id's in the
new node. In general, resequencing would be desirable in
order to prevent misidentification of vectors in the new
class. If you say yes, you will be asked for the
identification number for the first vector of the new node.
Id's are automatically incremented by one for each
succeeding vector of the new node.

132



CGMI;OD (continued)

EXAMFLE (S):

Session with SHORT prompts

TREE NAME - /SFCTRM/

PARENT NODE NAME - /CCLR/

CLASS SELECT LIST

red orng yelo gren blue ingo viol

CLASS SYMBCLS: /biv/
NEW NAME - /blue/
RESEQUEN!CE ID'S (Y/N)? /Y/
STARTING VECTOR ID. (NUMBER) - /5000/

(PROMPT NOTES:

You may respond to 'CLASS SYMBOLS' in one of three
ways:

1). A string of class symbols of the nodes to be
combined, e.g. 'biv' means "combine the nodes
blue, ingo, and viol" (notice that a class
symbol is the first character of a node name).

2). A minus sign followed by a string of class
symbols of the nodes you don't want combined,
e.g. '-royg' means "don't combine red, orng,
yelo, and gren, but do combine all the others,
i.e. blue, ingo, and viol."

3). A star (*) preceded or followed by no other
characters means 'combine all nodes specified
in the CLASS SLLECT LIST', e.g. '*' means the
same as 'roygbiv' , or "combine red, orng, yelo,
gren, blue, ingo, and viol."

It is important to remember that the name you give the

new node must meet one of the following criterions:

1). It may be the name of a node to combine.

2). If not the name of a node to combine, it must
be a legal OLPARS name not already in use by
any node of the current tree, and it must have
a class symbol unique among all other lowest
nodes of the current tree.

133



COM NOb (continued)

Session with LONG prompts

ENTER THE NAME OF THE TREE WHICH CONTAINS
THE NODES TO BE COMBINED - /SPCTRM/

ENTER THE NAME OF THE NODE WHICH IS THE
PARENT OF THE NODES TO BE COMBINED - /COLR/

ENTER A STRING OF CLASS SYMBOLS WHICH REPRESENT THE
NODES TO BE COMBINED.

USE THE 'CLASS SELECT LIST' AS A GUIDE
FOR CHOOSING THE PROPER CLASS SYMBOLS.

IF YOU ENTER A MINUS SIGN AT THE BEGINNING, THE SYMBOLS
FOLLOWING THE MINUS SIGN REPRESENT THE ONLY NODES
IN THE 'CLASS SELECT LIST' NOT TO BE COMBINED.

A STAR '*' ENTERED ALONE REPRESENTS ALL NODES IN
THE 'CLASS SELECT LIST'.

CLASS SELECT LIST

red orng yelo gren blue ingo viol

CLASS SYMBOLS: /-yogr/

ENTER A NAME (4 CHARACTERS MAXIMUM)
FOR THE NEW COMBINED NODE - /prpl/

DO YOU WANT THE VECTOR IDENTIFICATION NUMBERS
IN THE NEW NODE TO BE RESEQUFNCED (Y/N)? /y/

ENTER THE STARTING CLASS IDENTIFICATION NUMBER
FOR THE FIRST VECTOR OF THE NEW NODE - /3690/

134

______________________



CRANDTS

CCMMAND NAME: CRANDTS

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

CRANDTS creates a random data test set from the current
data set by extracting a user specified percentage of
vectors. The current data set must be structured such
that the current node is the senior node of the data
tree with only 'lowest' nodes immediately below it
(i.e., no intermediate nodes below the senior node are
allowed).

(CRANDTS splits the current data set into two separate
data sets, one for designing logic (design set), one
for testing the designed logic against (the test set).
The original data set is essentially destroyed.)

USER INTERACTION:

The user first enters a "new" tree name for the test
set being created. Following this, the user will be
asked to enter a number representing the percentage
of vectors to be extracted from the current data set.
Then the user will be prompted for a name to rename
the current uata set.

EXAMPLE(S):

In the following examples, GRAINS, GRAINTS, AND GRAINDS
are all data trees. GRAINS is the current data set,
with GRAINTS being the test set, and GRAINDS the
current data set after the completion of CRANDTS.

Session with SHORT prompts

TREENAME FOR NEW TEST SET? /GRAINTS/
PERCENTAGE TO EXTRACT - /50/
NEW NAME FOR THE CURRENT DATA SET? /GRAINDS/

135



CRANDTS (continued)

(PROMPT NOTES:

The current data set name is not allowed to be
entered as the test set name (e.g. in the previous
example, GRAINS would not be allowed at the first
prompt). If the current data set name is entered
at the 'NEW NAME FOR CURRENT DATA SET' prompt, the
current data set name will remain the same, but the
contents of the file will be different.

** WARNING **

If CRANDTS fails for some reason after the
prompts have all been answered, the current data set
will be corrupt.

Session with LONG prompts

ENTER A NAME FOR THE NEW TREE THAT YOU ARE CREATING.
(8 CHARS. MAX) - /GRAINS/

THE TEST SET NAME IS NOT ALLOWED
TO BE THE CURRENT DATA SET NAME.
ENTER A NAME FOR THE NEW TREE THAT YOU ARE CREATING.
(8 CHARS. MAX) - /GRAINTS/

ENTER A PERCENTAGE THAT WILL REPRESENT THE AMOUNT
OF VECTORS TO BE EXTRACTED FROM THE CURRENT TREE
TO THE NEW TREE. NUMBER ENTERED IS TO BE
BETWEEN 1 - 99 (E.G. 65 OR 62.5) - /50/

ENTER A NAME TO BE USED TO RENAME THE CURRENT DATA SET.
THE CURRENT DATA SET NAME WILL BE CHANGED ONCE THE TEST
SET IS CREATED.
TREENAME? /GRAINDS/

136

L



CREATLOG

CCMMAND NAME: CREATLOG

CATEGORY: LOGIC DESIGN CCMMAND (subsidiary)

FUNCTIONAL DESCRIPTION:

CREATLOG creates a one or two space group logic node in
an OLPARS logic tree. After the logic is created, the
vectors of the classes present at the logic node will
be evaluated against the logic (i.e., to which new logic
nodes do the vectors belong?).

This command can only be used after one of the one- or
two-space group logic design commands have been called
to create a data projection, and a data partition
(boundary) has been drawn on the projection.

USER !NTERACTION:

User is asked (1) to specify wLich data classes lie in
what regions, (2) whether or not a misclassification
error listing is to be sent to the local line printer,
and (3) if (s)he is satisfied with the results of the
decision logic.

EXAMPLE(S):

A user has projected the current data set using L2EIGV
(logic design, two space, eigen vector projection
command). A total of seven classes occur in the data
set. The user would like to break down future evaluation
steps into fewer classes, say two groups of four classes
each. The user has drawn a single boundary on the
projected data set separating classes 'soy', 'rye',
'alfa', and 'weat' from 'Cloy', 'rye', 'corn', and
'oats'. CREATLOG is the next command used.

Session with SHORT prompts

SUPPLY THE CLASS SYMBOL(S) OF THE CLASS(ES)

PRESENT IN FIRST CONVEX REGION

CLASS SELECT LIST

soy rye alfa weat Cloy oats corn

CLASS SYMBOLS: /sraw/

137

III I I I IJ 1 I I I I i , di ,. .



CREATLOG (continued)

SUPPLY THE CLASS SYMBOL(S) OF THE CLAS$(ES)
PRESENT IN REMAINING REGION

CLASS SELECT LIST

soy rye alfa weat Cloy oats corn

CLASS SYMBOLS: /Crco/

<At this point a between-group confusion matrix is
displayed to the user's terminal>

LISTING OF MISCLASSIFIED VECTORS (Y/N)? /Y/
RESULTS OK (Y/N)? /N/
... LOGIC NODE REMAINS INCOMPLETE

(PROMPT NOTES:

The misclassified vectors prompt will not appear if
there are no misclassifed vectors.

If the logic created does not produce good results,
an answer of 'NO' to the 'RESULTS OK?' prompt will
tell CREATLOG to leave the logic node incomplete.

Session with LONG prompts

Do to the length of the prompts, there is no example
given.

138



CSCALE

CCMMAND NAME: CSCALE

CATEGORY: UTILITY CCiMAND

FUNCTIONAL DESCRIPTION:

For one-space displays, when the count option is in
effect, CSCALE changes the display to feature the
probabilites option, and vice versa. For two-space
displays, when rectangular scaling is in effect,
CSCALE changes the display to feature square scaling,
and vice versa.

USER INTERACTION:

For one-space displays, if the user is in zoom mode

and square scaling is in effect, the user is given
a message that the option to change from square to
rectangular scaling in zoom mode is not available.
The user is then asked if he wishes to continue and
should type in 'Y' for yes or 'N' for no. If the
user chooses to continue, a display featuring square
scaling is shown. Otherwise, only the menu is
displayed. No other user interaction occurs.

139

L :, -,, , . . .. .. ... ,



DB NDY

COMMAND NAME: DBNDY

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

DBNDY deletes all existing display boundaries from the
display file. The projection is then redisplayed with
the menu.

USER INTERACTION: NONE

(NOTES:

A message is printed at the users terminal if the
projection is not a one- or two-space display.

140



CCA TA GD

CCMMAND NAME: DDATANOD

CATECCRY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

DDATANOD deletes one or more lowest nodes from a aata
set. To delete a tree with only one lowest node,
DDATATREE must be used. (Note, the 'current' node can
not be a lowest node). When the node to be deletea has
at least two siblings, the legality of the tree structure
is not affected by the deletion of the node. However, if
the deletion of the node leaves only one child at the
parent, the structure of the tree would become illegal.
To solve this structural problem, DDATANOD replaces the
parent node with the remaining node. (The parent node
name is discarded unless the parent node is the senior
node). For example:

With 2 siblings, where X is the node to be deleted -

0 0

XYZ Y Z

With 1 sibling, where X is the node to be deleted -

0 0

0 0 Y 0

X Y 0 0

o 0

USER INTERACTION:

The user is asked for the class symbol of the node (in
the current tree) to be deleted.

141



DDATANCD (continued)

EXAM FLE (S):

The following examples :3isume that the tree structure
of the current data tre' -s as follows:

A E

X Y

Where Y i the node to be deleted.

Session with SHORT prompts

SELECT ONE NODE FROM THE FOLLOWING LIST TO BE DELETED.

CLASS SELECT LIST

X123 Y123 EFGH

CLASS SYMBOLS: /Y/

SELECT ONE NODE FROM THE FOLLOWING LIST TO BE DELETED.

CLASS SELECT LIST

X123 EFGH

CLASS SYMBOLS: /<CR>/

(PROMPT NOTES:

If the current data tree is a one-class tree, the command
'DDATATREE' must be used to delete the node.

Class Symbols -

If the class symbol typed is invalid, ie., it doesn't
exist, DDATANOD will prompt the user again for a valid
class symbol. Only one class symbol will be accepted,
hence forcing only one node to be deleted at a time.

142



DDATANOD (continued)

Session with LONG prompts

SELECT ONE NODE TO BE DELETED -

CLASS SELECT LIST

X123 Y123 EFGH

CLASS SYMBCLS: /Y/

SELECT ONE NODE TO BE DELETED -

CLASS SELECT LIST

X123 EFGH

CLASS SYMBOLS: /<CR>/

143

i I I ' ' ' .. .... I I II I II -- 2 "' " , ' I



DDATATREEI

COMMAND NAME: DDATATREE

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

DDATATREE deletes a datatree from the user's directory.

USER INTERACTION:

The user is prompted for a tree name.

EXAMPLE(S):

In the following examples, TESTTREE is the name of
the data tree to be deleted.

Session with SHORT prompts

TREENAME? /TESTTREE/

TREENAME? /<CR>/

(PROMPT NOTES:

If the tree name is an invalid name or the tree name
does not exist in the tree list, then an error
message is displayed and the user will be prompted
for another tree name. DDATATREE continues to
prompt the user for a tree name until a carriage
return (<CR>) is typed.

Session with LONG prompts

TYPE IN THE OLPARS DATA TREE THAT IS TO
BE DELETED (8 CHARS. MAX.) - /TESTTREE/
TYPE IN THE OLPARS DATA TREE THAT IS TO
BE DELETED (8 CHARS. MAX.) - /<CR>/

144



DDSUBSTR

CCMMAND NAME: DDSUBSTR

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

DDSUBSTR permits a user to delete the substructure of an
intermediate node in an CLPARS data tree. All the vectors
under the intermediate node are merged into that node,
which now becomes a lowest node.

USER INTERACTION:

The user is prompted for the name of the tree which
contains the substructure to be deleted. Then a prompt
appears for the name of the intermediate node above the
substructure. If the node is the senior node, the user is
requested to confirm the substructure deletion.

When asked for the treename, the user can enter a colon -
star ':*'. The colon represents the senior node, the star
the current data set. With this combination, the entire
data tree structure could be deleted if the user confirms
that they want to start at the senior node. The colon can
be used with the treename itself if wanted.

If the node name or class symbol is not unique to the
lowest nodes outside the substructure, the user is asked
for a new node name. The user is then asked if the vectors
of the deleted substructure should have their identifiers
resequenced. If the reply is yes, a request for the
starting identifier number is given.

If the substructure has been successfully deleted, the user
will be informed of this and asked for another tree name,
in case there are more substructures to be deleted. Of
course, the user may quit at anytime.

145



DDSUBSTR (continued)

EXAMPLE (S):

The following examples assume the user has an OLPARS
data tree called BIGTREE as the current data set
(see figure). The substructure being deleted is below
node 0000.

I/: \ I \

AAAA 0000 CCCC AAAA 0000 CCCC
/ \

/ \

DDDD EEEE
/ \

/ \
/ \

LLLL KKKK

BEFORE AFTER

Session with SHORT prompts

TREE NAME? /BIGTREE/
NODE NAME? /***/
CONFIRM (Y/N)? /N/
NODE NAME? /0000/
RESEQUENCE VECTORS (Y/N)? /N/

SUBSTRUCTURE HAS BEEN DELETED.

TREE NAME? /<CR>/
<PROGRAM PUTS UP MENU>

146



DS UBSTR (continueo)

(PROM FT NOTES:

In the given example, the user initially requested to
delete the substructure of the senior node, but decided
not to do so. The node name prompt reappeared and node
0000 was chosen. At this point the user could be
notified that:

1) the node does not exist in the tree, in which case
a prompt for another node name would appear, or:

2) the node has no substructure, that is the node is
already a lowest node, in which case the prompt
would reappear, or:

3) the node name or class symbol may not be unique.
In this case the user is prompted for alternate
node name to assign to the node in the tree.

Since '0000' does not fall into any of these
categories, the resequencing strategy prompt
occurred next.

* ********* ********* *** ****** *** *** ** * ****** ********* )

Session with LONG prompts

ENTER THE NAME OF THE TREE WHICH CONTAINS
THE SUBSTRUCTURE TO BE DELETED -

DO YOU REALLY WISH TO DELETE THE ENTIRE
SUBSTRUCTURE (Y/N)? /N/

ENTER THE NODE NAME OF THE PARENT OF THE

SUBSTRUCTURE TO BE DELETED - /0000/

DO YOU WANT VECTORS RESEQUENCED IN NEW NODE (Y/N)? /Y/

ENTER THE STARTING CLASS IDENTIFICATION NUMBER
FOR THE FIRST VECTOR OF THE NEW NODE - /l/

THE SUBSTRUCTURE HAS BEEN DELETED

ENTER THE NAME OF THE TREE WHICH CONTAINS
THE SUBSTRUCTURE TO BE DELETED -/<R>/
<THE PROGRAM PUTS UP THE MENU>

147

i'



DLOGTREE

COMMAND NAME: DLOCTREE

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

DLOGTREE deletes a logic tree from the user's directory.

USER INTERACTION:

The user is prompted for a logic tree name.

EXAMPLE (S):

In the following examples, TESTTREE is the name of the
logic tree to be deleted.

Session with SHORT prompts

TREENAME? /TESTTREE/
TREENAME? /<CR>/

(PROMPT NOTES:

If the tree name is an invalid name or the tree name
does not exist in the tree list, then an error
message is displayed and the user will be prompted
for another tree name. DLOGTREE intinues to prompt
the user for a tree name until a carriage return
(<CR>) is typed.

Session with TONG prompts

TYPE IN THE OLPARS LOGIC TREE THAT IS TO
BE DELETED (8 CHARS. MAX.) - /TESTREE/
TYPE IN THE OLPARS LOGIC TREE THAT IS TO
BE DELETED (8 CHARS. MAX.) - I<CR>/

148



DLSUBSTR

CCMMAND NAME: DLSUBSTR

CATEGORY: UTILITY CCMMA11D

FUNCTIONAL DESCRIPTION:

DLSUBSTR deletes the logic at a specified node of

a logic tree.

USER INTERACTION:

The user is prompted for a logic tree name and logic node
number from which logic is to be deleted. The user is then
asked if (s)he wants to delete: (1) all logic at and below
the logic node specified, (2) independent reject strategy,
or (3) decision logic only (excluding independent reject
strategy). If the logic node selected is the senior logic
node, and the user specifies that (s)he wants to delete all
logic at that node, the user is asked to confirm the
d el etion.

If the logic at the user-specified node has sucessfully
been deleted, the user will be informed of this and asked
for another logic node number.

149

LL,



DLSUBSTR (continued)

EXAMPLE(S):

In the following example, the name of the logic tree
in which a logic substructure is to be deleted is
called LOGTREE and the node that is finally deleted
is node number 5.

Session with SHORT prompts

LOGIC TREE NAME? /LOGTREE/
LOGIC NODE NUMBER? /l/
DELETE:
(1) ALL LOGIC
(2) IND. REJ. STRAT. ONLY
(3) DECISION LOGIC ONLY
OPTION - /I/
CONFIRM (Y/N)? /N/
NODE NUMBER? /5/
DELETE:
(1) ALL LOGIC
(2) IND. REJ. STRAT. ONLY
(3) DECISION LOGIC ONLY
OPTION - /l/

LOGIC SUBSTRUCTURE HAS SUCCESSFULLY BEEN DELETED.

NODE NUMBER? /<CR>/

(PROMPT NOTES:

In the example above, the user initially requested to
delete all logic at the senior node, but decided not to do
so. The user was reprompted for the logic node number, and
node 5 was chosen. The user again chose option 1,
indicating that all logic at and below node 5 should be
deleted.

When the senior logic node is specified by the user, and
the user chooses option 1, delete all logic, a prompt
occurs to make sure the user really wants to delete all
logic in the logic tree. If the response is yes, then the
deletion occurs as normal. If the response is no, the user
is reprompted for the node number, and for the option
indicating which type of logic should be deleted at the
given node.

If the design data set has not been recently evaluated over
the user's logic, DLSUBSTR will print the message
'INCONSISTENCY BETWEEN THE SPECIFIED LOGIC NAME AND THE
DESIGN DATA SET'S LOGIC NAME' and then terminate.

150



DLSUBTR (continued)

Logic Tree Name - When asked for the logic tree name, the
user may enter a colon - star ':*V . The colon
represents the senior logic node, the star the current
logic tree. If the user types the star (*) alone in
response to the 'LOGIC TREE NAME' prompt, (s)he will
then receive the 'LOGIC NODE NUMBER' prompt. If the
user types a colon (:,' followed by a treename (may or
may not be the current logic tree), the senior node of
the tree specified will be referenced.

Logic Node Number - If the user specified node is not in
the logic tree, the following message is printed: 'NODE
-- IS NOT IN THE TREE', where -- is the specified node
number. The user is then reprompted for a valid node
number.

****I*********************************** ********

In the following example, LOCTREE is the user's current
logic.

Session with LONG prompts

ENTER THE NAME OF THE LOGIC TREE FROM WHICH A
SUBSTRUCTURE IS TO BE DELETED ('*' REFRESENTS
CURRENT LOGIC, INITIAL ':' MEANS START AT SENIOR
NGDr. ) - /:*I

DELETE:
(1) ALL LOGIC AT (IND BELOW) LOGIC NODE
(2) INDEPENDENT REJECT STRATEGY ONLY
(3) DECISION LOGIC ONLY (EXCLUDES INDEP. REJ. STRATEGY)
OPTION - /I/

DO YOU REALLY WISH TO DELETE THE ENTIRE LOGIC
TREE STRUCTURE (Y/N)? /N/

ENTER THE NUMBER OF THE LOGIC NODE AT WHICH THE
SUBSTRUCTURE IS TO BE DELETED - /5/

DELETE:
(M) ALL LOGIC AT (AND BELOW) LOGIC NODE
(2) INDEPENDENT REJECT STRATEGY ONLY
(3) DECISION LOGIC ONLY (EXCLUDES INDEP. REJ. STRATECY)
OPTION - /l/

LOGIC SUBSTRUCTURE HAS SUCCESSFULLY BEEN DELETED.

ENTER THE NUMBER OF THE LOGIC NODE AT WHICH THE
SUBSTRUCTURE IS TO BE DELETED /<CR>/

151



r

DRAWBNDY

COMMAND NAME: DRAWBNDY

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

DRAWBNDY lets an OLPARS user draw a partition on a
1-space or 2-space data projection.

For 1-space projections, one or two partitions
(thresholds) may be created.

For 2-space projections, one or two partitions
(boundaries) may be created. Each boundary may
contain up to five line segments.

USER INTERACTION:

If the OLPARS user is in 'short prompt' mode,
upon initiation of the DRAWBNDY command, a graphics
cursor will be displayed. If 'long prompt' mode
is active, the display is erased and an explanation
for drawing a data partition is given.

FOR 1-SPACE PROJECTIONS ONLY:

Position the graphics cursor on the spot where the
threshold is desired.

Type any alphanumeric key on the terminal (except 'Q')
to enter the threshold value into the current dataset.
f vertical line will be drawn on the display screen at
the threshold point.

Repeat the above steps to enter a second threshold.
Drawbndy will terminate after the second threshold
has been entered.

If the 'Q' key is typed in either instance, the
threshold which would have been created is ignored,
and DRAWBNDY terminates.

152



DRAWBIIDY (continued)

FCR 2-SPACE PROJECTIONS ONLY:

You are notified that you are in 'BCUNDARY entry mode'
by an intensified 'BCUNDARY: ' at the lower left hand
corner of the display.

Position the graphics cursor anywhere on the aisplay
screen in order to create the starting point of the
first boundary.

Type any alphanumeric key on the display terminal
(except 'Q') to enter the starting point (DRAWBNDY
will 'remember' the starting point while you move
the graphics cursor to the second point).

If you do type 'Q', DRAWBNDY will 'quit' (terminate)
because the starting point has not been entered yet.

Move the graphics cursor to another position, which will
be the second point of the boundary. If you enter the
point by typing an all'Ianumeric key (besides 'Q'),
you will see a line segment drawn from the starting
point to the second point.

If instead of entering the second point you type 'Q', you
will have an incomplete boundary. Should this occur,
DRAWBNDY will display an error message and terminate.

You may consider the one line segment as the boundary,
or you can keep adding line segments to the boundary in a
s.milar manner. Each new line segment will be drawn from
the previous point entered to the new point.

DRAWBNDY will let you enter up to six points (five line
segments) for each boundary. If you wish to enter fewer
than six, you can quit by typing 'Q' after you have
drawn the last line of the boundary.

After you have drawn either five line segments or typed
'Q' DRAWBNDY will display 'CONVX PT:' beneath
'BCUNDARY:'. When you see this, you must position the
graphics cursor somwhere within the convex region of the
boundary (the side which would be within a convex
polygon if the boundary were to be closed).

Enter the convex point by typing any alphanumeric key
but 'Q'. DRAWBNDY will now enter information on the new
boundary into the current dataset.

153

I



DRAWBNDY (continued)

If instead of entering the convex point, you enter 'Q',
DRAWBNDY will display an error message and terminate.
Whenever the convex point is 'missing' or the boundary
is 'incomplete', as stated in an error message, no
information on that boundary will be stored in the
current dataset.

After you have entered the convex point of the first
boundary, DRAWBNDY will let you draw a second boundary.
Again, you are notified you are in 'BOUNDARY entry
mode' bay an intensified 'BOUNDARY:'.

If you want to stop at this point (one boundary was
enough) press the 'Q' key. DRAWBNDY will terminate.

Otherwise, position the cursor to the starting point of
the second boundary, enter it by hitting any key but 'Q',
and proceed as before.

After you enter the convex point for your second
boundary, DRAWBNDY will terminate.

EXAMPLE(S):

In the examples which follow please note the meaning of
two symbols:

T means 'position the graphics cursor'
K means 'any alphanumeric key

except 'Q''

The current entry mode (BOUNDARY, CONVEX PT., THRESHOLD)
is shown to the left of the user input.

Sessions with SHORT prompts

FOR 1-SPACE PROJECTIONS ONLY:

To create two thresholds:

THRESHOLD: /...K/
THRESHOLD: /... K/

To create one threshold:

THRESHOLD: /...K/
THRESHOLD: /Q/

154



DRAWBLDY (continued)

FCh 2-2 FACE PRCJECTIONIS ONLY:

To create two boundaries - the first consisting of'

t.nree line segments, the second consisting of five:

ECUNDARY: /...K...K...K. ..KQ/
CCNVX PT: /...K/
ECUNLARY: /....K... K... K. . .K... K...K/
CCNVX PT: /...K/

To create one boundary consisting of only one line
segment:

BCUNDARY: /... K... KQ/
CCNVX PT: /...K/
ECUNDARY: /Q/

Session with LONG prompts

Due to the limitation of visible space on the display
screen there is no interactive 'SHORT' and 'LONG'
prompts (i.e., the OLPARS program help function is
not available in a graphics input program).

However, if you have changed the default prompt mode
to be 'LONG' by means of the 'CEEFAULT' command, you

will receive a preliminary explanation of how to respond
to the prompts issued by DRAWBNDY.

155

,



DRAW LOG

COMMAND NAME: DRAWLOG

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

DRAWLOG produces a pictorial display of a portion (or
all) of a logic tree at any stage in the development
of the logic. Logic nodes are displayed as partitioned
boxes with interconnecting lines to illustrate their
relationship to each other.

EXAMPLE LOGIC NODE

---- independent reject strategy indicator
-- logic node number

v v

* 2: NMV <--- logic type
--------------------abCsoW (--- class(es) present at node

The class(es) present at a logic node are listed
in the bottom portion of the box of every logic node
(except REJECT nodes) . If the node is a completed
logic node, there is only one class present, and its
name appears in this portion of the box. Otherwise the
class display symbols of the classes present at the
node appear in this region.

In the upper left portion of every logic node box is
the logic node number preceded by either a star or a
blank, depending upon whether an independent Boolean
reject strategy is associated with the node or not.

The upper right portion of the logic node box cnntains
the type of logic at the node (e.g. NMV), 'INCMPLr' for
incomplete logic nodes, or '*REJECT*' for reject nodes.

If a given logic tree is too large to display on the
screen, only a portion of the tree is displayed; with
the user option of displaying more.

156



DRAWLOG (continued)

USER INTERACTION:

The user is asked for the name of a logic tree, and
a logic node number to determine the structure to be
displayed.

EXAMPLE(S):

In the following example, the logic tree being drawn is
called GRAINS. The user has requested to see the
entire tree.

Session with SHORT prompts

LOGIC TREE NAME? /GRAINS/
LOGIC NODE NUMBER? /l/

(the screen is erased and the logic tree is displayed)

(PROMPT NOTES:

There is a short hand notation for obtaining a picture
of the "current" logic tree. Instead of typing the
name of the tree at the 'LOGIC TREE NAME?' prompt,
type an asterisk (*); then the current logic tree
name will be used by DRAWLOG (the logic node
number prompt will follow). If a leading colonC)
is typed with the logic tree name (e.g. :GRAINS),
the senior node (node number 1) will be used as the
starting node, and no 'LOGIC NODE NUMBER?' prompt
will appear. Thus, if ':*' is typed in at the
'LOGIC TREE NAME?' prompt, the senior node of the
current logic tree will be the starting node at which
DRAWLOG will display the tree.

PAGING *~> If a particular level in the logic
tree is only partially displayed,

DRAWLOG informs the user of this fact by placing a
zero (0) at the top of the display, and/or a minus one
(-1) at the bottom of the display. The 'LOGIC NODE
NUMBER?' prompt will appear at the bottom of the display.
If zero appears as a logic node number on the display,
then a zero may be entered at the prompt. This will
cause the next "page" of nodes to be displayed. If
minus one appears as a logic node number on the display,
and is entered at the prompt, then the previous "page"
of nodes is displayed.

157



DRAWLOG (continued)

During "paging" mode, the user may also enter a
"negative" node number (e.g. -21) at the prompt.
The requested node will appear as the first node
(at the bottom of the display) of a "paged" logic tree
display. This option allows a user direct viewing to
a specific portion of the tree.

When there are more logic tree levels than can be
shown at one time, extra lines are drawn radiating out
from the right side of each logic node box which has
an undisplayed structure beneath it. The 'LOGIC
NODE NUMBER?' prompt will appear so that the user has
the ability to see the undisplayed portion of the tree
(i.e., the user enters the number of the node showing
radiating lines).

Once some sort of "paging" occurs, DRAWLOG remains
active until the user tells it to exit via the OLPARS
program exit convention.

In the following example, GRAINS is the current logic
tree and the entire tree is to be shown.

Session with LONG prompts

ENTER THE NAME OF THE LOGIC TREE TO BE
DRAWN (,', REPRESENTS CURRENT LOGIC,
INITIAL ':' MEANS START AT SENIOR NODE) -

(the screen is erased and the logic tree is displayed)

158



DRAWTREE

COMMAND NAME: DRAWTREE

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

DRAWTREE displays a selected OLPARS data tree,
showing the structural relationship between the
various nodes of the tree.

USER INTERACTION:

The user is asked for the tree name and node name
of the data set to be drawn.

EXAMPLE(S):

In the following example, the data tree being drawn is
called GRAINS. The user has requested to see the
entire tree.

Session with SHORT prompts

TREE NAME? /GRAINS/
NODE NAME? /**/

(the screen is erased and the data tree is displayed)

(PROMPT NOTES:

In the short prompt example, the user requested the
entire tree to be drawn, because the senior node '****'
was given at the node name prompt. If the tree or node
name did not exist, the user would have been notified.

If the current data tree is to be drawn, the user
can specify this using a short hand notation. At the
'TREE NAME?' prompt, type in an asterisk (*); then the
current data tree name will be used by DRAWTREE (the
node name prompt will follow). If a colon (:) precedes
the data tree name (e.g. :GRAINS), the tree is displayed
starting at the senior node (no node prompt will appear
when a colon is used). Thus, if ':*' is typed in at the
'TREE NAME?' prompt, the senior node of the current data
tree will be displayed, starting at the senior node
(see next example).

159



DRAWTREE (continued)

PAGING * If a particular level in the data
tree is only partially displayed,

DRAWTREE informs the user of this fact by placing a
page number in the upper left corner of the display.
The 'NODE NAME?' prompt will appear at the bottom of the
display. At this point the user can type a comma (,) to
advance to the next "page" of the display. To return to
the previous "page", the user types two commas (,,) to
the 'NODE NAME?' prompt.

When there are more data tree levels than can be
shown at one time, extra lines are drawn radiating out
from the right side of each data node which has
an undisplayed structure beneath it. The 'NODE NAME?'
prompt will appear so that the user has the ability to
see the undisplayed portion of the tree (i.e., the user
enters the name of a node showing radiating lines).

Once some sort of "paging" occurs, DRAWTREE remains
active until the user tells it to exit via the CLPARS
program exit convention.

In the following example, the user requested to draw the
current data tree, starting at the senior node.

Session with LONG prompts

ENTER THE NAME OF THE TREE
WHICH YOU WANT TO DRAW -

(the screen is erased and the data tree is displayed)

160

IAI I ' I 1 '2 ' " 
' '

I I I



DSCRMEAS

CCMMAND NAME: DSCRMEAS

CATEGORY: MEASUREMENT EVALUATION CCMMAND

FUNCTIONAL DESCRIPTION:

DSCRMEAS computes the discriminant measurement evaluation
statistics and outputs to the screen an overall ranking
of the measurements for the current data set. An
overall ranking consists of a list of measurements, the
corresponding discriminant measurement values (in
descending order) , a list of class symbols and a list of
class pair symbols, both of which correspond to the
measurement number. The discriminant measurement values
displayed are those values which separate all classes on
the basis of a given measurement. The measurement
numbers which correspond to the largest discriminant
values (those at the top of the list) are in general
("overall") the best measurements. The class symbol
displayed represents the class which is best separated
from all other classes using the given measurement
("best class for measurement x") . The class pair symbol
represents the two classes which are best separated from
each other using the given measurement ("best class pair
for measurement x").

Note, DSCRMEAS can be used in excess measurement mode.

USER INTERACTION:

The user is asked to select one of the following options
for computing the discriminant measurement evaluation
statistics:

(1) weight classes equally
(2) weight classes by the number of vectors in each class

The option number selected by the user is used by
DSCRMEAS to determine the number (weighting factor) by
which to multiply the variance of a given class. If the
user selects Option ", the variance of a class is
multiplied by a number which equals the total number of
vectors in the data set divided by the number of classes
in the data set. If the user selects Cption 2, the
variance of a class is multiplied by the number of
vectors in the given class.

There will be more user interaction only if an exception
condition (zero denominator) occurs in the discriminant
measurement calculation. This will occur if the variance
of any measurement is zero for more than one data class,

161

1'



DSCRMEAS (continued)

or if more than one data class contains only one vector.
If an exception conditon occurs, the user is asked if a
listing of the exception conditions should be printed.
If the user indicates no listing is to be produced, (s)he
is then asked if command execution should continue. If
the user indicates a listing is to be produced, exception
conditions are printed at the terminal. If there is more
than one page of output, the user is prompted for the
view of the next page. If an answer of 'Y(es)' is given,
exception conditions continue to be printed. If all
output fits on one page, or if the user does not want to
see the next page, a prompt for command continuation is
given. Thus, the user has the opportunity to terminate
output of exception conditions or terminate execution of
the command after a page of output has been printed.

EXAMPLE(S):

Session with SHORT prompts

In the following example, the data set contains four
classes and the vector dimensionality is four. DSCRMEAS
results show that measurement 4 is the "overall" best
measurement. Also, the class best separated from all
other classes by measurement 4 ("best class for measure-
ment 4") is class C, and the two classes best separated
from each other by measurement 4 ("best class pair for
measurement 4") are classes A and C.

SELECT AN OPTION:
(1) WEIGHT CLASSES EQUALLY
(2) WEIGHT CLASSES BY THE NUMBER OF VECTORS IN EACH CLASS
OPTION # = /l/

A RANK ORDER DISPLAY DATE: 13-MAR-81 02:16:36

AN OVERALL RANKING

MEAS VALUE CLASS CLASS PAIR
4 8.3926E+00 C A/C
2 8.3155E+00 A A/C
1 7.5638E+00 C B/C
3 6.9224E+00 B A/D

(PROMPT NOTES:

DSCRMEAS will remain in prompt mode until the user
types a 'I' or a '2' or the OLPARS character for
exiting commands. A 'class pair symbol' is defined
to be 2 class symbols separated by a slash (/).

162

I.



DSCRMEAS (continued)

Session with LONG prompts

The following example assumes the variance for measure-
ment 2 was equal to zero in both class A and class D.

TYPE A '1' OR A '2' DEPENDING ON THE DESIRED OPTION #
(1) WEIGHT CLASSES EQUALLY
(2) WEIGHT CLASSES BY THE NUMBER OF VECTORS IN EACH CLASS
OPTION NUMBER = /2/

EXCEPTION CONDITION(S) INVOLVING A ZERO DENOMINATOR
OCCURRED IN THE CLASS PAIR DISCRIMINANT MEASUREMENT

CALCULATION(S)
DO YOU WANT A LISTING OF THESE EXCEPTIONS (Y/N)? /Y/

EXCEPTIONS TO DSCRMEAS CALCULATIONS. THE DISCRIMINANT
VALUE FOR EACH PAIR LISTED BELOW WAS SET TO ZERO.

PAGE 1

MEAS CLASS/# VECTORS CLASS/# VECTORS MEAN DIFFER.

2 A 10 D 10 O.OOOOE-01

CONTINUE (Y/N)? /N/

163

", , . .. . ... _ . .; - .+ - &



DTRENAME

COMMAND NAME: DTRENAME

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

Change the name of an OLPARS data tree.

USER INTERACTION:

The name of the data tree to be changed is
requested from the user, along with the new
name of the tree.

EXAMPLE(S):

The following example shows the tree 'GRAINS' being
renamed to 'CEREALS'.

Session with SHORT prompts

FROM? /GRAINS/
TO? /CEREALS/

(PROMPT NOTES: i

If the new name of the tree is already in use, the
user is requested for permission to destroy the
existing tree.

In the following example, the tree 'CEREALS' already

exists.

Session with LONG prompts

ENTER NAME OF TREE TO BE RENAMED - /GRAIN1/
ENTER NEW NAME OF TREE - /CEREALS/
THE NAME 'CEREALS' IS IN USE IN YOUR DIRECTORY;
DO YOU WANT TO DESTROY THE DATA SET WITH THAT NAME (Y/N)?
/Y/

164

1I



DVEC

COMMAND NAME: DVEC

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

DVEC deletes vectors from a class within the current data
set. All vectors, a range of vectors, or individual
vectors from a specified data class may be deleted.

USER INTERACTION:

The user is requested to pick the class from which
vectors are to be deleted. The user then chooses the
mode of vector deletion (all vectors, a range of vectors
or single vectors).

If a range of vectors is to be deleted, the user is
asked for beginning and ending vector identifiers which
bound the range of the vectors to be deleted.

If single vectors are to be deleted, the user is asked

for the individual identifiers of those vectors.

EXAMPLE(S):

In the following examplE, the data class from which
vectors are going to be deleted is 'oats'. All vectors
will be deleted from the class. The data node will
also be deleted because no vectors remain in the class.

(All examples assume the current data set is GRAINS-***,
with 'soy', 'oats', 'weat', 'rye', 'corn', 'Clov', and
'alfa' as data classes.)

Session with SHORT prompts

CLASS SELECT LIST

soy oats weat rye corn Cloy alfa

CLASS SYMBOLS: /o/
DELETE MODE (A/R/S)? /A/

...TOTAL NUMBER OF VECTORS DELETED 35

165

= , _ A -, : ' ; 
"

.... .. . ... J - : -3,



DVEC (continued)

In the next example, a range of vectors from data class
'soy' will be deleted.

CLASS SELECT LIST

soy weat rye corn Clov alfa

CLASS SYMBOLS: /s/
DELETE MODE (A/R/S)? /r/
RANGE (INITIAL,LAST)? /5,20/

...TOTAL NUMBER OF VECTORS DELETED 4

For the following example, only one vector is going to
be deleted from the data class 'weat'.

CLASS SELECT LIST

soy weat rye corn Clov alfa

CLASS SYMBOLS: /w/
DELETE MODE (A/R/S)? Is/
VECTOR ID(S) (END WITH ZERO)? /371 0/

...TOTAL NUMBER OF VECTORS DELETED = 1

(PROMPT NOTES: ***i**i****~*********imiiti*wui**imi

In the second and third examples, note that class
'oats' was missing from the class select list because
it was deleted in the first example.

Also, in the second example, note that only four
vectors were deleted, because only four vectors fell
within the specified range.

If a data class becomes empty during range or single
vector deletion, the data class node is deleted from
the tree and the user is notified.

During single vector deletion, the maximun number
of vector ids. that can be entered is twenty.

166



DVEC (continued)

Session with LONG prompts

The following example shows what occurs when all the
vectors from a data class have been deleted when using
single vector deletion.

PICK CLASS FROM WHICH VECTORS ARE TO BE DELETED

CLASS SELECT LIST

soy oats weat rye corn Cloy alfa

CLASS SYMBOLS: /r/
DELETE 1) ALL VECTORS

2) RANGE OF VECTORS
3) SINGLE VECTOR(S) -- (A/R/S)? /S/

ENTER NUMERIC IDENTIFICATION NUMBER(S)
(SEPARATED BY SPACES) OF VECTORS TO BE DELETED
(LAST ID. MUST BE ZERO, MAX. 20) - /17 16
35 3000 75 0/

(ALL VECTORS IN CLASS rye HAVE BEEN DELETED.
THE NODE HAS BEEN DELETED FROM THE DATA TREE.)

...TOTAL NUMBER OF VECTORS DELETED 5

167



EIGNXFRM

COMMAND NAME: EIGNXFRM

CATEGORY: TRANSFORMATION COMMAND

FUNCTIONAL DESCRIPTION:

EIGNXFRM g-nerates a new tree of equal or lower dimen-
sionality by transforming the current data set, using
the eigenvectors which correspond to the selected eigen-
values ( the selected eigenvalues consist of the thres-
hold eigenvalue and all eigenvalues above it in the
list).

USER INTERACTION:

The user is asked for the following information:

1) The name of the tree to be created as a result of the
transformation.

2) If a lineprinter listing of eigenvalues is desired.

3) The number of the threshold eigenvalue. This will
be the number of eigenvectors used to create the
transformation matrix.

4) If the transformation matrix should be saved, and if
so, the name of the saved transformation matrix.

EXAMPLE(S):

Session with SHORT prompts

In the following example, the current data set has a
dimensionality of six. The four largest eigenvalues
are selected, and the corresponding eigenvectors are
used to create a transformation matrix. The data set
is transformed, and a tree called NEWTREE is created.

NEW TREE NAME? /NEWTREE/

NUMBER EIGENVALUE

1 9. 475473E+02
2 1. 921622E+02
3 3. 763162E+O1
4 7. 532745E+00
5 3. 116945E+00
6 1.605199E+00

168



EIGNXFRM (continued)

PRINTOUT (Y/N)? IN/
NUMBER (POSITION) OF THE THRESHOLD EIGENVALUE: /4/
TRANSFORMATION COMPLETE
SAVE TRANSFORMATION MATRIX (Y/N)? IN/

(PROMPT NOTES: ********** ****************

Tree Name-

If the tree name entered by the user is the same as
the current tree name, an error message is printed
and 'EIGNXFRM' remains in prompt mode. If the tree
name entered already exists, but is not the same as
the current tree name, the user is asked if s(he)
wants to destroy the existing tree. If the user
types IYi (for yes), 'EIGNXFRM' creates a new tree
with the user-specified name. If the user types 'N'
(for no), 'EIGNXFRM' asks for another tree name.

Eigenvalue Threshold-

The user is prompted for an eigenvalue threshold
until a numbL-r greater than zero and less than or
equal to the dimensionality is typed.

Saved Matrix Name -

If the user wants to save the transformation matrix,
and there is no available space in the Saved Matrix
(SM) File, a message is printed and EIGNXFRM exits.
(NOTE: Although the transformation procedure was
successful, the user will be unable to save the
matrix used in this transformation. Try again later
after deleting some saved matrices from the SM
File.) The matrix name entered cannot exceed 8
characters of which the first must be alphabetic
and the remainder alphaniueric. The matrix name
must also be unique within the SM file. The user
is prompted until a valid and unique matrix name
is entered.

169

I J



EIGNXFRM (continued)

Session with LONG prompts

In the following example, the tree NEWTREE already
exists in the user's directory, and the user decides
to destroy it. The transformation matrix is saved
and is given the name EIGENI.

TYPE IN NAME TO GIVE TO THE OLPARS DATA TREE THAT
WILL BE CREATED AS A RESULT OF THE TRANSFCRMATION
/NEWTREE/

THE NAME "newtree" IS IN USE IN YOUR DIRECTORY; DO YOU
WANT TO DESTROY THE DATA SET WITH THAT NAME (Y/N)? /Y/

NUMBER EIGENVALUE

DO YOU WANT A PRINTOUT OF THE EIGENVALUES (Y/N)? /N/

THE TRANSFORMATION MATRIX WILL CONSIST OF EIGENVECTORS
WHICH CORRESPOND TO THOSE EIGENVALUES ABOVE AND
INCLUDING THE THRESHOLD EIGENVALUE.
NUMBER (POSITION) OF THE THRESHOLD EIGENVALUE: /4/

TRANSFORMATION COMPLETE

DO YOU WISH TO SAVE THE TRANSFORMATION MATRIX (Y/N)? /Y/

TYPE IN THE NAME OF THE MATRIX TO BE SAVED - /EIGEN1/

170



FILEIN

CCMMAND NAME: FILEIN

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

FILEIN creates an CLPARS data tree from a "system" text
file with the following format.

1-4 character class name,
[vector identifier,]

1 [keyword 1,]
(keywords have an arbitrary

v . length and may be imbedded
e with blanks)
c [keyword H,]
t XI,
o

r . (vector elements)

Xndim;

[/*j (end of file indicator)

Note: [] means optional field.

The vectors are separated with semicolons (;).
Therefore, there may be more than one vector per
input data line, or conversely, there may be more
than one input data line per vector.

ALL vectors in the file to be converted to an
OLPARS data tree must have the same format.

E.G., - the following vector has a vector id.,
2 keywords, and 4 vector elements.

expl, 1, this is an example vector, dim. of 4,
1,2,3,45.7;

- the following vectors have no vector ids.
or keywords, and there are 5 vector elements
in each.

ex, 1.2,3.0, 2, 5 , 7.9; eg,1,2,3,4,5;

FILEIN will report the first 5 vectors that have any
format errors. After that, it will remain quiet

171

I.



FILEIN (continued)

until the end of processing the input file. A total
count of errors encountered will be given. If five
or less errors are encountered, FILEIN will still
create the data tree. WARNING: the data in this tree
may or may not be what you expect it to be.

Note, FILEIN can be used in excess measurement mode.

USER INTERACTION:

The user is asked:

1) for a file name - the name of the file to be
converted to an OLPARS data tree.

2) for a tree name - the name of the OLPARS data tree
to be created.

3) whether or not there is a numeric vector
identifier on each vector.

4) for the number of keywords on each vector.

5) for the dimensionality of the data set.

EXAMPLE (S):

The following example assumes the user has his/her
vectors in the file "FILEIN.DAT" (located in user's
OLPAR directory) with a format similar to the one
given in the first example above.

Session with SHORT prompts

FILENAME? /FILEIN. DAT/
TREE NAME? /MYTREE/
VECTOR ID. (Y/N)? /Y/
KEYWORD COUNT (NUMBER *? /2/
VECTOR DIMENSIONALITY? /4/

(PROMPT NOTES: ***************************

Filename -

When FILEIN can't open the file specified
here (because it doesn't exist or for some
other obscure "system" dependent reason),
it will inform you of the problem and then
prompt you for another file name.

172

--Id_ _ _ _ _ _ _ _ _ _ _ _ _



FILEIN (continued)

Tree name -

If the tree name specified already exists,
FILEIN will ask if you want the existing
tree destroyed. If you want the tree
destroyed, type in a "Y" (for yes). User
interaction will then continue as above.
If you don't want the tree destroyed,
type in a "W' (for no). FILEIN will then
ask you for another tree name.

Vector identifier -

Each vector is allowed to have a user assigned
numeric identification code (maximum value limited
by local integer size). If no vector identifier is
present on the input-vector (indicated to FILEIN by
typing 'N' to the prompt), FILEIN will assign a
unique identifier to each incoming vector.

Keyword count -

If there are no keywords on any of
the vectors, type a zero (0).

Vector dimensionality -

If you don't happen to know how many measurements
are in each vector of the input data set (shame
on you), type in a zero. The first vector in the
data set will be used to determine the vector
dimensional ity.

Note: FILEIN can currently create what can be
considered an 'invalid' OLPARS data tree. The tree
consists of a senior node and one lowest node (usually
there must be at least two lowest nodes under any
intermediate node). Throughout OLPARS there is no
other way to obtain a tree with only one lowest node
under an intermediate node. This specialized tree is
being allowed so that single vectors or classes may
be added to existing trees via the APPEND command.

173

I _ _ _ _ _ _ _ _ _ '



FILEIN (continued)

Session with LONG prompts

In this example, the user has the FILEIN input file
"USERDATA" in their OLPARS directory. There are no
vector identifiers or keywords on any of the vectors.
Each vector has 25 elements.

TYPE IN NAME OF DATA FILE TO BE CONVERTED TO OLPARS
DATA TREE - /USERDATA/

TYPE IN NAME TO GIVE TO THE OLPARS DATA TREE YOU WANT
TO CREATE (8 CHARS. MAX.) - /MYTREE2/

IS THERE A VECTOR IDENTIFIER (NUMBER :
PRESENT ON EACH RECORD (Y/N)? /N/

TYR.E IN THE NUMBER OF KEYWORDS PRESENT ON EACH
VECTOR - /0/

HOW MANY MEASUREMENTS ARE IN AN INDIVIDUAL VECTOR
(TYPE 0, IF UNKNOWN)? /25/

1.7



FILEOUT

CCMMAND NAME: FILEOUT

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

FILEOUT places the vectors of an CLPARS data tree into
a "system" text file with the following format:

OLPARS data file output format

.....- > 1-4 character class name,
* xl

(vector elements)

one vector -> xndim;

/* (end of file indicator)

Note, FILEOUT can be used in excess measurement mode.

USER INTERACTION:

The user specifies:

1. the tree to be converted to a "system" file
2. the "system" file name
3. the field width of a vector measurement
4. the number of decimal positions in the

measurement output field (precision)

EXAMPLE (S):

The following example shows the OLPARS data tree
'GRAINS' being dumped into the "system" file
'GRAINS.TXT'. The measurements of a vector are to
be turned into floating point format with a field
width of nine and precision of four (e.g. the
number 89. 34765 will look like ' 89.3476')

Session with SHORT prompts

TREE NAME? /GRAINS/
FILENAME? /GRAINS.TXT/
EXPONENTIAL FORMAT (Y/N)? INI
FIELD WIDTH (2-15) - /"/
DECIMAL PRECISION (0-7) - /4/

175

If



FILEOUT (continued)

(PROMPT NOTES: *********************************

At the tree name prompt, the user may specify the
current data set by typing ' *'.

When using the floating point format, the total field
width specified must be large enough to accommodate
a minus sign (plus signs are suppressed), at least
one digit to the left of the decimal point, the
decimal point itself, and <precision> digits to the
right of the decimal. For this reason, <field width>
should always be greater than or equal to <precision>
plus three.

When using 'scientific' notation format, the total
field must accommodate a possible minus sign, space
for a single numeric digit, a decimal point, and a
four-place exponent (e.g. E-99), in addition to
<precision> digits. Therefore, <field width> should
always be greater than or equal to <precision>
plus seven.

Note, it is possible to obtain an output conversion
error from FILEOUT if a measurement is too large for
the <field width>-<precision> specification. When
this happens, the user is shown the class, vector id.
and measurement number where the conversion error has
occurred. FILEOUT then halts execution.

In the next example, the current data set is going
to be dumped into the text file 'GRIT'1. The data
vectors contain large exponents so they will be
dumped using exponential format.

Session with LONG prompts

ENTER THE NAME OF THE DATA SET TO BE
USED ('*' REPRESENTS CURRENT DATA SET) - /*/

TYPE IN NAME OF FILE TO CONTAIN DATA VECTORS - /GRIT/

DO YOU WANT THE VECTOR MEASUREMENTS TO BE PLACED
IN SCIENTIFIC NOTATION (.DVISABLE FOR NUMBERS THAT
EXCEED FLOATING POINT FORMAT) (Y/N)? /Y/

TYPE IN OUTPUT FIELD WIDTH OF A MEASUREMENT (7-15) - /11/

TYPE IN DECIMAL PRECISION OF A MEASUREMENT (0-4) - /3/

176



FISHER

CCMMAND NAME: FISHER

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

FISHER initiates pairwise logic for a user specified
logic node. At the given logic node, Fisher pairwise
logic is created. The logic is constructed by computing
optimal linear discriminants and 5 thresholds for every
class pair within the group of classes present at the
given logic node. During logic evaluation, the
discriminants and thresholds are used to distinguish one
produces a vote, indicating the class to which the vector
Lalongs. (Note, the vector may be rejected if the
discriminant thresholds selected contain reject regions,
or the maximum vote count is not adequate, as indicated
by the minimum vote threshold.)

The following diagram is a visual aide depicting an
unknown vector passing through Fisher logic created for
four cl.asses.

Unknown Vector

-------------------v------------------- Class Pair
Logics

A
--------------------------------- (A/B)

a aI

a I

B
---------------------- (A/C)

aCa (B/C)
Ci

-- --- (A/D)
(B/D)

D (C/D)

* Im I---------------------- +------------------+----------------

-------------------------- ------------------- - reject
v v V v

A B C D a vote tallies

v

Maximum Vote Selector

V

Classified or Rejected Vector

177



FISHER (continued)

Measurements may be ignored during computation of the
Fisher discriminant.

To evaluate the newly created logic, use PWEVAL.

Modifications may be made to the Fisher* logic using one
of the pairwise modification commands (e.g. FISHMOD).

* Fisher pairwise logic refers to a one-space logic,
based on the Fisher direction, for each possible
pair of classes present at the node for which logic
is being designed.

USER INTERACTION:

The user is asked (1) if all vectors from the classes
which lie at the logic node should be used, (2) whether
there are measurements to be ignored, (3) for a minimum
vote count, (4) for a number of thresholds.

EXAMPLE(S):

In the following example, the user has decided to use
only those vectors which lie at the logic node, to ignore
the second measurement, to use a minimum vote count of 2,
and 4 thresholds.

Session with SHORT prompts

USE ALL VECTORS OF CLASSES AT INCOMPLETE LOGIC NODE? /N/
IGNORE MEASUREMENTS (Y/N)? /Y/
MEASUREMENT # /2/
MEASUREMENT # <CR>
MINIMUM VOTE COUNT? /2/
NUMBER OF THRESHOLDS? /4/

(The program puts up the menu)

(PROMPT NOTES: *******.mu***u**..**.********.*.mu.*****

Note, <CR> is entered to complete the ignore measurement
cycle. If <CR> is entered at the first measurement
prompt, however, the command will exit.

There is an upper limit to the minimum vote count;
one less than the number of classes present at the

178

I



FISHER (continued)

logic node.

FISHER allows the selection of 1, 2, 3, or 4 thresholds.
With one threshold, the vote is either for one class or
the other, and the threshold (3) is exactly between the
projection of the two class means (see figure a)

a) One Threshold for class pair (E vs C)

o Co e Ee
O o e e

o o e e
0 0 e e

0 0 e e
O o e e

o e o E
--------------------------------- --------------------------)>

m(O) t(3) rn(E)

Vote for class 'E' if (D,X) > t(3)

Vote for class '0' if (D,X) <= t(3)

Notational Lescription for figures

m(O) - mean of class '0'
t(1) - first threshold (5 thresholds total)
d(ij) - discriminant vector of the ith and jth class
D - d(ij)
X - arbitrary class vector
(D,X) - vector X evaluated against discriminant

> - relational operator 'greater than'
=> - relational operator 'greater than or equal to'
< - relational operator 'less than'
<= - relational operator 'less than or equal to'

179



7'ISHiER (continued)

With two thresholds, the vote can be for either class, or
a reject if the projection of the vector falls between
threshold 2 and 14 (see figure b).

b) Two Thresholds for class pair (E vs C)

o Co eE e
0 o e e

0 0 e e
0 o e e

0 oe e
0 ec e

0 e 0 e
------------------------------- ------ ---------------------

M(O) m(E)
t ( 2 t ( 4

Vote for class 'E' if (D, X) > t(Lt4
Vote for class '0'1 if (D, X) < t(2)

NO VOTE if t(2) <= (D, X) <= t(4)

With three thresholds, the vote can be rejected if it
falls outside the far left and right thresholds, 1 and 5,
respectively. (see figure c)

c) Three Thresholds for class pair CE vs C)

o o e e
0 o e e

0 0 e e
0 0 e e

0 o e e
o e c, E

------------------------------------ --------------------- >
t(1 M(O) t(3) niCE) t(5)

Vote for class 'E'I if t(3) <(CD,X) < t(5)
Vote for class '0'1 if t(1)< (CD, X) <= t( 3

140 VOTE if CD,X) <= tW) or (D,X) => t(5)

180



F7ISHER (continued)

With four thresholds (1,2,4, and 5 are in effect),the
vector must fall within the neighborhood of the class
means to avoid being rejected (see figure d).

d) :our Thresholds for class pair (E vs C)

o Go e Ee
o o e e

o 0 e e
o o e e

o oe e
o eo e

0 e 0 e
---------- -------- -----------------

m(O) m(E)
t(e ) t(2) t(4) t(5)

Vote for class 'E' if t(4) < (D,X) < t(5)
Vote for class 10' if t(1) < (D,X) < t(2)

NO VOTE if (D,X) <= t(1) or t(2) <: (D,X) <= t(4)
or (D,X) => t(5)

If 'E' is considered the first class and '0' considered
the second class of a class pair, OLPARS initially
sets the discriminant threshold values to:

t(1) = Mean(O) - (' ta(, C)/2

t(2) = Mean(O) + delta(E,O)/3

t(3) = Mean(O) + delta(E,C)/2

t(4) = Mean(E) - delta(E,G)/3

t(5) = Mean(E) + delta(E,C)/2

Where:

t(1) = first threshold (5 thresholds total)

Mean(i) = mean vector of class 'i'

delta(i,j) = Mean(i) - Mean(j)

1 g1

II i II II , .,,. : , .
--. - i I I I i , . . . ,."Ii .



FISHER (continued)

In this example the covariances of only those vectors
that lie at the logic node are used, all the measurements
are included in calculations, the minimum vote count is
set to three, and the number of thresholds used is three.

Session with LONG prompts

DO YOU WANT TO USE ALL THE VECTORS OF
THE CLASSES THAT LIE AT THE INCOMPLETE LOGIC NODE
IN LOGIC CALCULATIONS
('NO' MEANS USE ONLY THOSE VECTORS THAT
LIE AT THE LOGIC NODE) (Y/N)? /N/
DO YOU WISH TO ELIMINATE MEASUREMENTS
FROM THE COMPUTATION (Y/N)? /N/
ENTER THE MINIMUM VOTE COUNT,
( .AXIMUM IS NUMBER OF CLASSES MINUS 1) - /3/
ENTER THE NUMBER OF THRESHOLDS YOU WOULD LIKE (1-4) - /3/

(The program puts up the menu)

182

k, - 104.



ADAlla 733 PAR TECINOLOG T CORP NEW HAR TFP0 NY 
F/ S 9/2

ON-LINE PATTERN ANAL YSIS AND RECOGNITION SYSTEM. OLPARS VI. USE--ETCU)JUN 82 S E HAEHN, D MORR IS

UNCLASSIFIED PAR-82-21 NL

4EEEEEEEEmEEEEEEEE~lEEE
EEEEEEEEEEEEEE
EEEEEIIIIEEIIE



FISHMOD

COMMAND NAME: FISHMOD

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

FISHMOD modifies pairwise logic at a user chosen logic
node. The user has the option of modifying the minimum
vote count and the number of thresholds.

This command can only be used after FISHER has created
pairwise logic in the current logic tree.

To evaluate the logic use PWEVAL.

USER INTERACTION:

The user is asked (1) which pairwise logic node should be
modified, (2) for a new minimum vote count, (3) for a new
number of thresholds.

EXAMPLE(S):

In the following example, the user has decided to
modify pairwise logic node number 3, change the minimum
vote count to 6, and the number of thresholds to 2.

Session with SHORT prompts

LOGIC NODES WITH >LIRWISE LOGIC

23
NODE NUMBER? /3/
MINIMUM VOTE COUNT? /6/
NUMBER OF THRESHOLDS? /2/

(The program puts up the menu)

(PROMPT NOTES:

There is an upper limit to the minimum vote count: one
less than the number of classes present at the logic
node.

183

L1



F TSIIMCD (continued)

In this example the user decides to mcdify logic node
2, change the minimum vote count to 1,
and the number of thresholds to 4.

Session with LONG prompts

LOGIC NODES WITH PAIRWISE LOGIC

2 3
ENTER THE LOGIC NODE YOU WISH TO MODIFY - /2/
ENTER THE MINIMUM VOTE COUNT,
( :AXIMUM IS NUMBER OF CLASSES MINUS 1) - /l/
ENTER THE NUMBER OF THRESHOLDS YOU WOULD LIKE (1-4) - /4/

(The program puts up the menu)

184

k i d . . .. ~~ ~ a.- 9!, . * . .. . . .. ,.... , ...... . .... . .-



HELP

COMMAND NAME: HELP

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

HELP gives the user a helpful description of an
OLPARS subject or of a specific OLPARS command.
The user may also obtain a listing of all available
help files. All help is written to the terminal.

USER INTERACTION:

The user types in a character string which may be
one of the following:
(1) an OLPARS command name
(2) the name of an OLPARS subject
(3) the initial characters (sub-string) of a command

name or subject name
(4) 'ALL'

Typing 'ALL' will give the user a listing of all
available help files.

EXAMPLE (S):

Session with SHORT prompts

REQUEST? /DSCRMEAS/

DSCRMEAS computes the discriminant measurement evaluation
statistics and outputs to the screen an overall ranking
of the measurements for the current data set.

(DSCRMEAS help continued)

REQUEST? /PROMPTING/

OLPARS programs prompt the user in two modes: (1)
short mode and (2) long mode. Long prompt mode
gives the user more detailed instructions than
short prompt mode. If the user is in short mode
and needs more information, before (s)he can respond
to a prompt, (s)he may type a question mark (?) and a
long prompt will occur. To change the prompt mode,
the user should run the commamd 'CDEFAULT.'

185



ELP (continued)

REQUEST? /<CR>/

(PROMPT NOTES:

To leave the HELP command, the user must type the
OLPARS 'exit command' character (<CR> in the examples
given). if a legitimate filename cannot be created
from the user-typed character string, or if the help
file does not exist or cannot be opened, the
user is notified that no help is available for
the given request, and a prompt for another request
appears.

Session with LONG prompts

In the following example, the user types a command
for which there is no help available. (S)he then
types 'ALL' to get a listing of available subjects.
The listing in this example shows what an 'ALL' help
file might look like.

TYPE IN SUBJECT STRING FCR HELP DESIRED
('ALL' FOR LIST OF AVAILABLE SUBJECTS) - /RANKORDER/
THERE IS NO HELP AVAILABLE FOR RANKORDER
TYPE IN SUBJECT STRING FOR HELP DESIRED
('ALL' FCR LIST OF AVAILABLE SUBJECTS) - /ALL/

* ADDVEC * ANYTHING * APPEND * BYEOLP
CLEFAULT CURRENTDS CLASSLIST * CCMNOD
DRAWBNDY EVALUATE FEATURES * FILEIN

* HELP * LIEIGV * L2EIGV * LOGEVAL
MENU * NAMELOG * NMV PLOTS
PROMPTING * PRTDS * RANK * REERAW

* SlEIGV * S2EIGV SCALING * SCALZM
* SETDS * SETLOG * UNION

* INDICATES COMMAND NAMES

TYPE IN SUBJECT STRING FOR HELP DESIRED
('ALL' FCR LIST OF AVAILABLE SUBJECTS) -/<CR>/

186



"r TE14 '9 F '

COMMAND NAME: INTENSIFY

uATEGORY: UTILITY CCMMAND

FU1NCTIONAL DESCRIPTION:

INTENSIFY highlights a class or classes currently displayed
by drawing a solid outline around the given class
distributions. It should be noted that (unless classes are
well separated) when more than two classes are concurrently
intensified , the display itself becomes cluttered with
lines, which makes it difficult to observe the
distributions. This routine is .nly applicable to
one-space micro displays only. (If used on a one-space
macro plot, a micro plot will be generated at the
terminal.)

USER INTERACTION:

A class select list of valid display node names is
displayed at the terminal. From these names you are asked
to select valid class symbols for intensification. If a
minus sign is entered as the first character in the input
string, then all class symbols in the select list EXCEPT
the ones entered will be intensified. If a star '' is
entered, then all the class symbols in the select list will
be intensified. A minus-star '-* will turn all of the
class symbols off and there will be no classes intensified.

EXAMPLE(S):

In the following examples we will use the node names
CCRN, SOY, and RYE.

Session with SHORT prompts

CLASS SELECT LIST

CORN RYE SOY

CLASS SYMBOLS: /SC/

187



INTENSIFY (continued)

(PROMPT NOTES:

There is no difference between the 'SHORT' and 'LONG'
prompts. If a '?' is entered for the reply to prompt,
you will receive an explanation at your terminal on
how to reply to the prompt. If the class symbol
entered is invalid, or is not in the select list, a
message will be displayed at the terminal and you
will receive the prompt again.

188



L 1ASEG

CCMMALD NAME: L1ASEG

CATECORY: LOGIC DESIGN CCMMA1D

FL1WCTIONAL DESCRIPTION:

LIASEG projects a data set on to the Fisher direction
associated with two algebraically-assigned gro-ipings
of data classes at an incomplete logic node. The
groupings are determineo by locating two classes whose
mean vectors have the largest Euclidean separation.
The remaining classes are associated with the class
of this pair to which they are closest. If the class
groupings are unacceptable, they may be regrouped
manually. The final groupings need not comprise the
entire data set; however, the entire data set is
projected on the resulting Fisher vector.

USER INTERACTION:

The user is asked:

1) To select an incomplete logic node number
(only when there is more than I incomplete
logic node).

2) If all of the vectors of the classes which lie
at the incomplete logic node are to be used in
the computation of the Fisher and orthogonal
discriminants (as opposed to using only those
vectors which lie at the logic node).

3) If the computed division of the classes into
two groups is not acceptable, the user is
asked to select the classes to be found in
groups 1 and 2.

4) if any measurements are to be eliminated from
the computations.

5) If covariance or scatter matrices are to be

used in the computations.

EXAMPLE(S):

The following examples assume that 2, 3, 4, and 5 are
incomplete logic noae numbers of the current logic.
Node number 4 will be used. Only those vectors which lie
at the incomplete logic node will be used in the computa-
tions. Classes ABCD, EFGH, IJKL, and VNOP lie at node
number 4. Classes ABCE and N"NOP are to be found in group

189



LIASLG (continued)

1, and class IJKL is to be found in group 2. Scatter
matrices will be used in the computations, and measure-
ment number 3 will be eliminated.

Session with SHORT prompts

IU1CCMPLETE LOGIC NODES

2345

LCGIC NODE? /4/

USE ALL VECTORS OF CLASSES AT INCOMPLETE LOGIC
NODE (Y/N)? /N/
INITIALIZING DISPLAY FILE HEADERS

<ERASE SCREEN>
CLASSES IN GROUP 1 -

RSTU

CLASSES IN GROUP 2 -

ABCL EFGH IJKL MNOP

ACCEPTABLE (Y/N)? /N/

<ERASE SCREEN>
SELECT THE CLASSES TO BE FOUND IN GROUP 1 -

CLASS SELECT LIST

ABCD EFGH IJKL MNOP RSTU

CLASS SYMBOLS: /AM/

SELECT THE CLASSES TO BE FOUND IN GROUP 2 -

CLASS SELECT LIST

ABCD EFGH IJKL MNOP RSTU

CLASS SYMBOLS: /I/

<ERASE SCREEN>

CLASSES IN GROUP 1 -

ABCL MNOP

CLASSES IN GROUP 2 -

IJKL

190

IhiI-



L1ASDG (continued)

ACCEPTABLE (Y/N)? /Y/

ELIMINATE MEASUREMENTS (Y/N )? /Y/
MEAS = /3/
MEAS = /<CR>/

CCVARIANCE/SCATTER MATRIX OFTION (C/S)? /S/

(PRCM FT NOTES:

If only one incomplete logic node lies at the current
data set, then that is the logic node which will be used,
and no selection will take place.

Class Symbols -

The class symbol string must be typed on a single
line with no intermittent blanks, commas, and the
like. If the class symbols typed are invalid class
symbols, i.e. they don't exist, LIASEG will prompt
the user again for some valid class symbols. If the
user types in one or more invalid class symbols, all
valid class symbols must be retyped on the next try.

Group Division-

All classes at the logic node need not be used in the
computations, but there must be at least one class in
each group. Also, no class should appear in both
groups 1 and 2. If a class is repeated, a message is
printed and the user is reprompted for the classes in
group 2.

Session with LONG prompts

INCGMPLETE LOGIC NODES

TYPE IN A LOGIC NODE NUMBER FROM THE INCCMPLETE LOGIC
NODE LIST - /4/

DO YOU WANT TO USE ALL THE VECTORS OF THE
CLASSES THAT LIE AT THE INCCMPLETE LOGIC NODE
IN LOGIC CALCULATIONS
('NO' MEANS USE ONLY THOSE VECTORS THAT
LIE AT THE LOGIC NODE) (Y/N)? /N/

INITIALIZING DISPLAY FILE HEALERS

191
Li .i



LlASEG (continued)

<EhASE SCREEN>

CLASSES III GROUP 1 -

RSTU

CLASSES IN GROUP 2 -

AECD EFGH IJKL MNOP

IS THIS AN ACCEPTABLE DIVISION OF THE
CLASSES (Y/II)? /14/

<ERASE SCREEN>
SELECT THE CLASSES TO BE FOUND IN GROUP I -

CLASS SELECT LIST

ABCI EFGH IJKL MNOP RSTU

CLASS SYMBOLS: /AM/

SELECT THE CLASSES TO BE FOUND IN GROUP 2 -

CLASS SELECT LIST

ABCE EFGH IJKL MNOP RSTU

CLASS SYMBOLS: /I/

<ERASE SCREEN>
CLASSES IN GROUP 1 -

ABCD MNOP

CLASSES IN GROUP 2 -

IJKL

IS THIS AN ACCEPTABLE DIVISION OF THE
CLASSES (Y/N)? /Y/

DO YOU WISH TO ELIMINATE MEASUREMENTS FROM THE
CCMPUTATION?
(TYPE Y FOR YES, N FOR NO, <CR> TO EXIT) /Y/
MEASUREMENT NUMBER = /3/
MEASUREMENT NUMBER = /<OR>/

ARE COVARIANCE OR SCATTER MATRICES TO BE USEE
IN THE COMPUTATION OF THE FISHER DISCRIMINANT
(.C-CCVARIAINCE, S-SCATTER)? /S/

192

I



L IFE V

CCMMAND NAME: L1CREV

CATECCRY: LOGIC DESIGN CCMMAND

FUNCTIONAL DESCRIPTION:

L1CRLV allows a user to project the current
data set onto a single coordinate for use in
loic design. A one-space display is
created at the terminal.

USER INTERACTION:

The user is asked:

1) To select an incomplete logic node number
(only when there is more than 1 incomplete
logic node).

2) 1vhether or not all of the vectors of the
classes which lie at an incomplete logic
are to be used in the logic calculations

3) The user is asked to select one coordinate

(measurement number) for use in the projection.

EXAMFLE(S):

The following example shows the prompts obtained
when only one incomplete logic node exists in a
logic tree.

Session with SHORT prompts

USE ALL VECTORS OF CLASSES AT INCOMPLETE LOGIC

NODE (Y/N)? /Y/

COCRDINATE NO. FOR THE X PROJECTION: /l/

INITIALIZING DISPLAY FILE HEADERS

(PROMPT NOTES:

Coordinate Number -

The coordinate number entered by the user must
be greater than zero and less than or equal to
the vector dimensionality. If an invalid

193



L 1CRLV (continued)

coordinate number is entered, arn error message
will occur and the program will continue to
prompt the user for a valid coordinate number.

***********************************************

Session with LONG prompts

DC YOU WANT TO USE ALL THE VECTORS OF THE
CLASSES THAT LIE AT THE INCOMPLETE LOGIC NODE
IN LOGIC CALCULATIONS
('NO' MEANS USE ONLY THOSE VECTORS THAT

LIE AT THE LOGIC NODE) (Y/N)? /N/

ENTER THE COOREINATE NUMBER TO USE FCR THE X
PROJECTION: /5/

INITIALIZING DISPLAY FILE HEADERS

194



L 1EICV

r NAE: L IGV

'ATECCRY: LOGIC CGN CCYXAIZ

LNCTT NAL DESCRIPTICN:

LEIGV projects a aata set onto an eigenvector
for use in logic cesign. A brief description of
the program algorithm follows:

1) if more than one incomplete logic node exists in
the logic tree, you will be asked to specify one.

2) Eigenvalue computations will be based on only
those classes that lie at the incomplete logic
node. You may optionally choose, however, to
base the eigenvalue computations on the ccvariance
matrix of either all the vectors of the classes
or only those vectors that lie at the incomplete
logic node.

3) You will be given the option to eliminate any
measurements from the projection.

4) The eigenvalues will be displayed in descending
order at your terminal. You will select one
eigenvalue number. The eigenvector which
corresponds to the eigenvalue number you select
will be used as a projection vector.

5) For each class at the incomplete logic node the
chosen data vectors (see '2' above) will be
projected on the projection vector, i.e.,

X(i) the projection of data vector i onto
projection vector I

6) A macro plot or a micro plot will be displayed at

your terminal.

USER INTERACTION:

You will be asked:

1) To select an incomplete logic noae (if more

than one exists).

2) If you want to use all vectors of the classes
at the incomplete logic node or only those
vectors that lie at the incomplete logic node.

195



L 1IG%' (ccntinuec)

3) :f any measurements are to be eliminated from
from the computation of the projection
v ec tor s.

4) f you want a print-ut of the eigenvalues.

5) To select one eigenvalue for use in the
projection.

EXAM FLE (S ):

For both examples to follow, these conditions hold:
1) The vector dimensionality is 4.
2) The incomplete logic node numbers for the

current data set are 1,2,-3,4, and 5.

Session with SHORT prompts

INCCMFLETE LOGIC NODES

12345

LOGIC NODE? /l/

USE ALL VECTORS OF CLASES AT IINCCMPLETE LOGIC NODE?
(Y/N)? /Y/

INITIALIZING DISPLAY FILE HEALERS

ELIMINATE MEASUREMENTS? Y/N /N/

NUMBER EIGENVALUE

I 2. 439089E+03
2 4. 154599E+02
3 3. 277070E+02
4 2. 880631E+02

PRINTOUT? Y/N /N/

EIGENVECTOR NO. FOR THE X PROJECTION: /2/

196

I.



LIEIGV (continued)

(PRCM FT N OTES:

,easurement Number -

if the user types a carriage return the first
time this prompt occurs, the program will exit.
The following checks are made on the measurement
number:

1) check for a valid measurement number
(greater than zero and less than or
equal to the vector dimensionality)

2) check to see that the user does not
type the same measurement number twice

3) check to see that the user coes not
eliminate all the measurements

Note: errors from conditions 1 and 2 above cause
the user to remain in prompt mode; an error
from condition 3 causes an error message to
be printed and the program to exit.

Eigenvector Number-

The program stays in prompt mode until the user
types in a valid eigenvector number (greater than
zero and less than or equal to the number of
measurements used in the computation)

Printout? -

The program stays in prompt mode until the user
types Y or N as the first character typed. If
the user types Y a lineprinter copy of the above
NUMBER/EIGENVALUE table is produced

197



LIEIG (continued)

Session with ILANG prompts

!NCCMPLETE LOGIC NODES

1 2 3 4 5

TYPE IN A LOGIC NODE NUMBER FROM THE If'CCMPLETE LOGIC
NODE LIST - /l/

DO YOU WANT TO USE ALL THE VECTORS OF
THE CLASSES THAT LIE AT THE INCCMPLETE LOGIC NODE
IN LOGIC CALCULATIONS
('NO', MEANS USE ONLY THOSE VECTORS THAT
LIE AT THE LOGIC NODE) (Y/N) /Y/

INITIALIZING DISPLAY FILE HEADERS

DO YOU WISH TO ELIMINATE MEASUREMENTS FROM THE
CCM PUTATION?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT /Y/

MEASUREMENT NUMBER = /0/
INVALID MEASUREMENT NUMBER
VALID MEASUREMENT NUMBERS OCCUR BETWEEN 1 AND 4
MEASUREMENT NUMBER = /l/
MEASUREMENT NUMBER = /<OR>/

NUMBER EIGENVALUE

1 1. 87893 9E+03
2 3.958894E+02
3 2.931851E+02

DO YOU WANT A PRINTOUT OF THE EIGENVALUES?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT /N/

ENTER THE EIGENVECTOR NUMBER TO USE FOR THE X
PROJECTION: /Il/

198



L2ASLG

CCMMAND NAME: L2ASEG

CATEGORY: LOGIC DESIGN CCMMAND

FUNCTIONAL DESCRIPTIO :

L2ASLG projects a data set on to the optimal discriminant
plane associated with two algebraically-assigned
groupings of data classes at an incomplete logic node.
The groupings are determined by locating two classes
whose mean vectors have tha largest Euclidean separation.
The remaining classes are associated with the class
of this pair to which they are closest. If the class
groupings are unacceptable, they may be regrouped
manually. The final groupings need not comprise the
entire data set; however, the entire data set is
projected on the resulting optimal discriminant plane.

USER INTERACTION:

The user is asked:

1) To select an incomplete logic node number
(only when there is more than I incomplete
logic node).

2) If all of the vectors of the classes which lie
at the incomplete logic node are to be used in
the computation of the fisher and orthogonal
discriminants (as opposed to using only those
vectors which lie at the logic node).

3) If the computed division of the classes into
two groups is not acceptable, the user is
asked to select the classes to be found in
groups 1 and 2.

4) If any measurements are to be eliminated from
the computations.

5) If covariance or scatter matrices are to be
used in the computations.

EXAMPLE (S):

The following examples assume that 2, 3, 4, and 5 are
incomplete logic node numbers at the current data set.
Node number 4 will be used. Only those vectors which lie
at the incomplete logic node will be used in the computa-
tions. Classes ABCD, EFGH, IJKL, and MNOP lie at node
number 4. Classes ABCD and MNOP are to be found in group

199

e . ... .....



L2ASLG (continued)

1, and class IJKL is to be found in group 2. Scatter
matrices will be used in the computations, and measure-
ment number 3 will be eliminated.

Session with SHORT prompts
---- -- - - - - -- - - - -

INCCMPLETE LOGIC NODES

2345

LOGIC NODE? /4/

USE ALL VECTORS OF CLASSES AT INCOMPLETE LOGIC
NODE (Y/N)? /N/
INITIALIZING DISPLAY FILE HEALERS

<ERASE SCREEN>
CLASSES IN GROUP 1 -

RSTU

CLASSES IN GROUP 2 -

ABCL EFGH IJKL MNOP

ACCEPTABLE (Y/N)? /N/

<ERASE SCREEN>
SELECT THE CLASSES TO BE FOUND IN GROUP 1 -

CLASS SELECT LIST

ABCD EFGH IJKL MNOP RSTU

CLASS SYMBOLS: /AM/

SELECT THE CLASSES TO BE FCUND IN GROUP 2 -

CLASS SELECT LIST

ABCD EFGH IJKL MNOP RSTU

CLASS SYMBOLS: /I/

<ERASE SCREEN>
CLASSES IN GROUP 1 -

ABCD MNOP

CLASSES IN GROUP 2 -

IJKL

200



L2ASLG (continued)

ACCEPTABLE (Y/N)? /Y/

ELIMINATE MEASUREMENTS (Y/N)? /Y/
MEAS = /3/
MEAS = /<CR>/

COVARIANCE/SCATTER MATRIX OPTION (C/S)? /S/

(PROMPT NOTES: *********************************

If only one incomplete logic node lies at the current
data set, then that is the logic node which will be used,
and no selection will take place.

Class Symbols-

The class symbol string must be typed on a single
line with no intermittent blanks, commas, and the
like. If the class symbols typed are invalid class
symbols, i.e. they don't exist, L2ASDG will prompt
the user again for some valid class symbols. If the
user types in one or more invalid class symbols, all
valid class symbols must be retyped on the next try.

Group Division -

All classes at the logic node need not be used in the
computations, but there must be at least one class in
each group. Also, no class should appear in both
groups 1 and 2. If a class is repeated, a message is
printed and the user is reprompted for the classes in
group 2.

Session with LONG prompts

INCOMPLETE LOGIC NODES

23145

TYPE IN A LOGIC NODE NUMBER FROM THE INCOMPLETE LOGIC
NODE LIST - /4/

DO YOU WANT TO USE ALL THE VECTORS OF THE
CLASSES THAT LIE AT THE INCOMPLETE LOGIC NODE
IN LOGIC CALCULATIONS
('NO' MEANS USE ONLY THOSE VECTORS THAT
LIE AT THE LOGIC NODE) (Y/N)? /N/

INITIALIZING DISPLAY FILE HEADERS

201



L2ASDG (continued)

<ERASE SCREEN>
CLASSES IN GROUP 1 -

RSTU

CLASSES IN GROUP 2 -

ABCD EFGH IJKL MNOP

IS THIS AN ACCEPTABLE DIVISION OF THE
CLASSES (Y/N)? /N/

<ERASE SCREEN>
SELECT THE CLASSES TO BE FOUND IN GROUP 1 -

CLASS SELECT LIST

ABCD EFGH IJKL MNOP RSTU

CLASS SYMBOLS: /AM/

SELECT THE CLASSES TO BE FOUND IN GROUP 2 -

CLASS SELECT LIST

ABCD EFGH IJKL MNOP RSTU

CLASS SYMBOLS: /I/

<ERASE SCREEN>
CLASSES IN GROUP 1 -

ABCD MNOP

CLASSES IN GROUP 2 -

IJKL

IS THIS AN ACCEPTABLE DIVISION OF THE
CLASSES (Y/N)? /Y/

DO YOU WISH TO ELIMINATE MEASUREMENTS FROM THE
COMPUTATION?
(TYPE Y FOR YES, N FOR NO, <CR> TO EXIT) /Y/
MEASUREMENT NUMBER = /3/
MEASUREMENT NUMBER = /<CR>/

ARE COVARIANCE OR SCATTER MATRICES TO BE USED
IN THE COMPUTATION OF THE FISHER DISCRIMINANT
(C-COVARIANCE, S-SCATTER)? /S/

202

' . " ':,;- :' L . .... :.hi



L2CRDV

COMMAND NAME: L2CRDV
CATEGORY: LOGIC DESIGN COMMAND
FUNCTIONAL DESCRIPTION:

L2CRDV allows a user to project the current data setonto two coordinates for use in logic design. A two-space display is created at the terminal.USER INTERACTION:
The user is asked:

1) To select an incomplete logic node number (onlywhen there is more than one incomplete logicnode).
2) Whether or not all of the vectors of the classeswhich lie at an incomplete logic node are to beused in the logic calculations.
3) To select two coordinates (measurement numbers)

for use in the projection.

EXAMPLE(S):

The following example shows the prompts obtained when
only one incomplete logic node exists in a logic tree:

Session with SHORT prompts

USE ALL VECTORS OF CLASSES AT INCOMPLETE LOGIC

NODE (Y/N)? /Y/

COORDINATE NO. FOR THE X PROJECTION: /6/

COORDINATE NO. FOR THE Y PROJECTION: /l/

INITIALIZING DISPLAY FILE HEADERS

(PROMPT NOTES:

Coordinate Number-

The coordinate number entered by the user must
be greater than zero and less than or equal to
the vector dimensionality. If an invalid
coordinate number is entered, an error message

203



L 2 CRDV (continued)

will occur an the program will. contilnue to
prompt the user for a valid coordinate number.

The following example shows the prompts obtained when
the incomplete logic node numbers at the current data
set are 1,2,3,4, and 5.

Session with LONG prompts

INCOMPLETE LOGIC NODES

TYPE IN A LOGIC NODE NUMBER FROM THE INCOMPLETE LOGIC

NODE LIST - /5/

DO YOU WANT TO USE ALL THE VECTORS OF
THE CLASSES THAT LIE AT THE INCOMPLETE LOGIC NODE
IN LOGIC CALCULATIONS
('NO' MEANS USE ONLY THOSE VECTORS THAT
LIE AT THE LOGIC NODE) (Y/N)? /N/

ENTER THE COORDINATE NUMBER TO USE FOR THE X
PROJECTION: /6/

ENTER THE COORDINATE NUMBER TO USE FOR THE Y
PROJECTION: /l/

INITIALIZING DISPLAY FILE HEADERS

20~4



L2EIGV

COMMAND NAME: 1.2EIGV

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

L2EIGV projects a data set onto a pair of eigenvectors
for use in logic design. A brief description of
the program algorithm follows:

1) If more than one incomplete logic node exists in
the logic tree, you will be asked to specify one.

2) Eigenvalue computations will be based on only
those classes that lie at the incomplete logic
node. You may optionally choose, however, to
base the eigenvalue computations on the covariance
matrix of either all the vectors of the classes
or only those vectors that lie at the incomplete
logic node.

3) You will be given the option to eliminate any
measurements from the projection.

4) The eigenvalues will be displayed in descending
order at your terminal. You will select two
eigenvalue numbers. The two eigenvectors which
correspond to the two eigenvalue numbers you
select will be used as projection vector,

5) For each class at the incomplete logic node the
chosen data vectors (see '2' above) will be
projected on the projection vectors, i.e.,

X(i) = the projection of data vector i onto
projection vector 1

Y(i) = the projection of data vector i onto
projection vector 2

6) A scatter plot or a cluster plot will be displayed
at your terminal.

205



L2EIGV (continued)

USER INTERACTION:

You will be asked:

1) To select an incomplete logic node (if more
than one exists).

2) If you want to use all vectors of the
classes at the incomplete logic node or
only those vectors that lie at the incomplete
logic node.

3) If any measurements are to be eliminated from
from the computation of the projection
vectors.

4) If you want a printout of the eigenvalues.

5) To select two eigenvalues for use in the
projection.

EXAMPLE(S):

For both examples to follow, these conditions hold:
1) The vector dimensionality is 4.
2) The incomplete logic node numbers for the

current data set are 1,2,3,4, and 5.

Session with SHORT prompts

INCOMPLETE LOGIC NODES

12345

LOGIC NODE? /l/
USE ALL VECTORS OF CLASSES AT INCOMPLETE LOGIC NODE?
(Y/N)? /Y/
INITIALIZING DISPLAY FILE HEADERS
ELIMINATE MEASUREMENTS (Y/N)? /Y/

MEAS = /3/
MEAS = /<CR>/

NUMBER EIGENVALUE

1 1.725496E+03

2 4.118130E+02
3 2.986911E+02

PRINTOUT? Y/N /Y/
EIGENVECTOR NO. FOR THE X PROJECTION: /2/
EIGENVECTOR NO. FOR THE Y PROJECTION: /3/

206



L2EIGV (continued)

(PROMPT NOTES:

Measurement Number -

If the user types a carriage return the first
time this prompt occurs, the program will exit.
The following checks are made on the measurement
number:

1) check for a valid measurement number
(greater than zero and less than or
equal to the vector dimensionality)

2) check to see that the user does not
type the same measurement number twice

3) check to see that the user does not
eliminate all the measurements

Note: errors from conditions 1 and 2 above cause
the user to remain in prompt mode; an error
from condition 3 causes an error message to
be printed and the program to exit.

Eigenvector Number -

The program stays in prompt mode until the user
types in a valid eigenvector number (greater than
zero and less than or equal to the number of
measurements used in the computation)

Printout? -

The program stays in prompt mode until the user
types Y or N as the first character typed. If
the user types Y a lineprinter copy of the above
NUMBER/EIGENVALUE table is produced

207

sJ m i ' ,, "



L2EIGV (continued)

Session with LONG prompts

INCOMPLETE LOGIC NODES

123 45

TYPE IN A LOGIC NODE NUMBER FROM THE INCOMPLETE LOGIC
NODE LIST - /I/

DO YOU WANT TO USE ALL THE VECTORS OF
THE CLASSES THAT LIE AT THE INCOMPLETE LOGIC NODE
IN LOGIC CALCULATIONS
('NO', MEANS USE ONLY THOSE VECTORS THAT
LIE AT THE LOGIC NODE) (Y/N) /Y/

INITIALIZING DISPLAY FILE HEADERS

DO YOU WISH TO ELIMINATE MEASUREMENTS FROM THE
COMPUTATION?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT IN/

NUMBER EIGENVALUE

1 2.439089E+03
2 4.154599E+02
3 3.277070E+02
4 2.880631E+02

DO YOU WANT A PRINTOUT OF THE EIGENVALUES?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT IN/

ENTER THE EIGENVECTOR NUMBER TO USE FOR THE X
PROJECTION: /l/

ENTER THE EIGENVECTOR NUMBER TO USE FOR THE Y
PROJECTION: /2/

208



L2FSHP

COMMAND NAME: L2FSHP

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

L2FSHP projects the vectors at an incomplete logic node
on two fisher directions which correspond to two pairs
of data classes within the selected data set. Note, the
resultant fisher discriminant vectors are ortho-
normalized before they are used for data projection.

USER INTERACTION:

The user is asked:

1) To select an incomplete logic node number
(only when there is more than 1 incomplete
logic node).

2) If all of the vectors of the classes which lie
at the incomplete logic node are to be used in
the computation of the fisher discriminants
(as opposed to using only those vectors which
lie at the logic node)

3) To select a pair of classes to be used in the
computation of the first fisher discriminant.

4) To select a pair of classes to be used in the
computation of the second fisher discriminant.

5) If covariance or scatter matrices are to be
used in the computations.

6) If any measurements are to be eliminated from
the computations.

EXAMPLE(S):

The following examples assumes that 1,2,3,4, and 5 are
incomplete logic node numbers at the current data set.
Node number 4 will be used. Only those vectors which lie
at the incomplete logic node will be used in the
computations.Classes ABCD,EFGH,IJKL, and MNOP lie at node
number 4. Classes ABCD and MNOP will be used to compute
fisher discriminant 1 and EFGH and MNOP will be used to
compute fisher discriminant 2. Scatter matrices will be
used in the computations, and measurement number 3 will
be eliminated.

209

- " ll ll I I I | I I I I'



LZFSHF (continuea)

Session with THCRT prompts

INCCMFLETE LOGIC NCDES

12345

LOGIC NCDE? /4/
USE ALL VECTCRS OF CLASSES AT INCCMFLETE LOGIC
N!ODE (YIN )? IN/
INITIALIZING DISPLAY FILE HEAEERS

SELECT TWC CLASSES FROM THE LIST EELOW TO USE IN
THE COMPUTATION OF FISHER 1

CLASS SELECT LIST

ABCD EFGH IJKL M1NOP

CLASS SYMBCLS: IAMI
SELECT TWO CLASSES FROM THE LIST BELOW TO USE IN
THE CCMPUTATION OF FISHER 2

ABCE EFGH IJKL MNOP

CLASS SYMBCLS: /EM/
CCVARIANICE/ SCATTER MATRIX OPTION (0/1)? /l/
ELIMINATE MEASUREMENTS (Y/IN)? /Y/
MEAS = /3/
MEAS = /<CR>/

(PROMPT NOTES:

If only one incomplete logic node lies at the current
data set, then that is the logic node which will be used,
and no selection will take place.

If the two fisher discriminants are linearly dependent,
the message 'THE TWO FISHER PROJECTION VECTORS ARE
LINEARLY DEPENDENT. THE X AND Y PROJECTION VECTORS WILL
BE THE SAME VECTOR.' is printed.

Class Symbols -

The class symbol string must be typed on a single
line with no intermittent blanks, commas, ana the
like. If the class symbols typed are invalid class
symbols, i.e. they don't exist, L2FSHP will prompt
the user again for some valid class symbols. if the
user types in one or more invalid class symbols, all
valid class symbols must be retyped on the next try.

210

_ ii



L2FShF (continued)

Session with LONG prompts

INCCMFLETE LOGIC NCLES

12325

TYPE IN A LOGIC NOCE NUMBER FRCM THE INCCMPLETE LOCIC
NODE LIST - /4/

DO YOU WANT TO USE ALL THE VECTORS OF THE
CLASSES THAT LIE AT THE INCCMPLETE LOGIC NODE
IN LOGIC CALCULATIONS
('NO' MEANS USE ONLY THOSE VECTORS THAT
LIE AT THE LOGIC NODE) (Y/I )? /N!

INITIALIZING DISFLAY FILE HEALERS

FROM THE LIST CF LOWEST NODES BELOW, SELECT THE
FIRST AND SECOND CLASS TO BE USEE TO COMPUTE
FISHER 1 (IE. CS)

CLASS SELECT LIST

ABCI, EFGH IJKL MNOP

CLASS SYMBOLS: /i/
FROM THE LIST OF LOWEST NODES BELOW, SELECT THE
FIRST AND SECOND CLASS TO BE USED TO COMPUTE
FISHER 2 (IE. CS'

CLASS SELECT LIST

ABCD EFGH IJKL MNOP

CLASS SYMBOLS: /EM1/

ARE COVARIANCE OR SCATTER MATRICES TO BE USEL
IN THE COMPUTATION OF THE FISHER DISCRIMINANT
(0-CCVARIANCE, 1-SCATTER)? /l/

DC YOU WISH TO ELIMINATE MEASUREMENTS FROM THE
CCM FUTATION?
(TYPE Y FOR YES, N FOR NO, <OR> TO EXIT) /Y/
MEASUREMENT NUMBER = /3/
MEASUREMENT NUMBER = /<OR>/

211

,lei -ii_



LISTLOGS

COMMAND NAME: LISTLOGS

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

LISTLOGS displays at the users terminal, the names
of all the user's logic trees, whether or not the
logic is complete, and the design sets of those logics
with their dimensionality.

USER INTERACTION: NONE

EXAMPLE(S):

This is an example of the display with logic trees
present. The display is in the form:

<logic name> <treename>.<nodename (class)>

The number in parenthesis () is the dimensionality
of the design set. The (I) represents an incomplete
logic.

LOGIC TREES DESIGN DATA SET DATE: dd-mmm-yy
hh:mm:ss

LOGNAME (I) TREENAME.**** (4)
LOGIC2 NASAl .Clov (4)
LOGIC3 (I) TREE3 .soy (4)
HWOOD HOLLY .WOOD (11)

(NOTES:

In the above example, '****' represents the senior
(highest) node in the data tree.

A message is printed at the user's terminal if there
are not any logic trees in the file.

212



LISTREES

COMMAND NAME: LISTREES

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

LISTREES displays at the users terminal, the names
of all the user's data trees along with their
dimensionality.

USER INTERACTION: NONE

EXAMPLES(S):

This is an example of the display with trees present.
The number in parenthesis () is the dimensionality
of the tree.

USER DATA TREES DATE: dd-mmm-yy hh:mm:ss

NAME2 (4)
NAME3 (4)
TESTNAME (4)

(NOTES:

A message is printed at the user's terminal if
there are not any data trees in the file.

213

lW . L? ." , ,... . ,1 '



LOGEVAL

COMMAND NAME: LOGEVAL

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

LOGEVAL enables the user to test any logic, complete or
incomplete, against a data set or a single vector having
the same dimensionality. The logic used is the current
logic and the data set used is the current data set.
LOGEVAL operates in four modes: (1) complete, (2) restore,
(3) classifier, and (4) single vector.

In complete mode, a complete logic is evaluated and a
confusion matrix display is created. Restore mode
assuresthat the logic design commands know which vectors
currently reside at which logic nodes. Restoring an
incomplete logic allows the user to continue logic design
on that logic after a different logic has been designed or
evaluated using the same data set. In classifier mode, a
complete or incomplete logic is evaluated and a table is
created listing the number of vectors residing at each
lowest logic node. In single vector mode, a single vector
is passed through the logic, and the result is displayed on
the screen.

USER INTERACTION:

The user is asked to select the mode of operation for
LOGEVAL - either complete, restore, classifier, or single
vector. If the user has run the command REASNAME (see note
on following page), and if complete, classifier (with a
complete logic), or single vector mode is chosen, a query
for use of the reassociated class names during logic
evaluation will be given. If the operator selects complete
mode, a query will be given to determine if the user wants
a printout of the confusion matrix and/or an error
(misclassification) listing. If classifier mode is
selected, the user is asked if a printout of the tabular
output and/or a printout of vector id's and the logic nodes
to which the vectors were assigned is desired. When single
vector mode is selected, the operator is asked (1) if the
vector to use is from the current data set or will be typed
in at the terminal, and (2) to type in either the class
symbol and vector id of the vector or the vector itself,
depending on the response to (1).

214 LJ.



LOGEVAL (continued)

NOTE

If the current data set is not the data set that
was used to design the current logic, or if the
current data set does not have the same classes
as the data set that was used to design the logic,
the user should execute the command REASNAME.
REASNAME will allow the user to rename the classes
in the logic to be the same as the classes in the
current data set. The renamed classes are called
reassociated classes. The user should use the
reassociated class names whenever the data and
logic tree class names differ.

EXAMPLE(S):

Session with SHORT prompts

LOGEVAL OPERATION MODES:
(1) COMPLETE
(2) RESTORE
(3) CLASSIFIER
(4) SINGLE VECTOR

(NOTE: An example will be given for each operation
mode. The examples assume that reassociated
class names exist for the current logic.)

o................................................

OPERATION MODE: /l/

USE REASSOCIATED CLASS NAMES (Y/N)? /Y/

(a confusion matrix is displayed.)

CONFUSION MATRIX PRINTOUT (Y/N)? /Y/

(a confusion matrix is printed at the lineprinter.)

ERROR LISTING (Y/N)? /Y/

(an error listing is printed at the lineprinter.)

......................ooeeeoooeeoeeeeeeeee.........

OPERATION MODE: /2/

(no more prompts occur.)

215

4,



LOGEVAL (continued)

OPERATION MODE: /3/

USE REASSOCIATED CLASS NAMES (Y/N)? /Y/

(a classification table containing the lowest logic node
numbers, associated class (or INCOMPLETE or **** (which
represents 'reject')), and vector count is displayed.)

PRINTOUT (Y/N)? /Y/

(the table described above is printed at the
lineprinter.)

LISTING CF VECTOR ID'S AND LOGIC NODES (Y/N)? /Y/

(a table containing the vector id's, the logic node
numbers, and the associated class (or INCOMPLETE or
**** (reject)) is printed at the lineprinter.)

...... veeee.........................................

OPERATION MODE: /4/

USE REASSOCIATED CLASS NAMES (Y/N)? /Y/

(1) USE A VECTOR FROM THE CURRENT DATA SET
(2) TYPE IN THE VECTOR AT THE TERMINAL
SELECT AN OPTION (I OR 2): /l/

CLASS SYMBOL OF THE VECTOR TO BE EVALUATED: /A/

VECTOR ID: /24/

THE VECTOR WAS ASSIGNED TO LOGIC NODE 5 CLASS ANOD

(PROMPT NOTES:

In single vector mode, measurements may be typed in
either integer, floating point, or exponential format.

216



LOGEVAL (continued)

Session witi LONG prompts

LOGE VL OPERATES IN THE FCLLOWING FCUR MCDES:

(1) CCMFLETE: THE CURRENT DATA SET IS EVALUATED
USING A CCMPLETEL LOGIC, AN'D A CCFUSION MATRIX
IS DISPLAYEL.

(2) RESTORF: Ali INCOMPLETE LOGIC, ' TTH A DESIGN DATA
SET NAME THAT IS THE SAME AS THE CURhENT DATA SET NAME,
IS USED TO EVALUATE THE CURRENT DATA SET AND RESTORE
THE VECTORS TO THE CCRRECT LOGIC NODES.

(3) CLASSIFIER: THE CURRENT DATA SET IS EVALUATED,
USINlG EITHER A COMPLETE OR AN INCOMPLETE LOGIC, TO
DETERMINE THE NUMBER OF VECTORS ASSIGNED TO EACH CLASS
IN THE LOGIC.

(4) SINGLE VECTOR: A SINGLE VECTOR (1WHICh MAY COME FROM
THE CURRENT DATA SET OR MAY BE TYPED I BY THE USER)
IS EVALUATED USING A COMPLETED LOGIC AND THE RESULT
IS DISPLAYED AT THE TERMINAL.

(NOTE: An example will be given for each operation
mode. The examples assume there are no
reassociated class names for the current logic.)

SELECT THE MODE OF OPERATION (I THRU 4)

TO USE FOR LOGIC EVALUATION: /I/

(a confusion matrix is displayed.)

DO YOU WANT A CONFUSION MATRIX PRINTOUT (Y/N)? /N/

DO YOU WANT A LISTING OF MISCLASSIFIED VECTORS (Y/N)? /N/

.................................... ~o..........

SELECT THE MODE OF OPERATION (1 THRU 4)
TO USE FOR LOGIC EVALUATION: /2/

(no more prompts occur.)

217

• . , ,.



LOGEVAL (continued)

SELECT THE MCDE OF OPERATICN (1 THRU 4)
TO USE FOR LOGIC EVALUATION: /3/

(a table containing the lowest logic node numbers,
associated class (or INCCMFLETE or **** (reject)),
and vector count is displayed.)

DO YOU WANT A LISTING OF THE ABOVE TABLE (Y/N)? /,/

DO YOU WANT A LISTING OF VECTOR I 'S AND THE LOGIC NODES
TO WHICH VECTORS WERE ASSIGNEE (Y/N)? /N/

(NOTE: In the following example, the user has chosen to
type in the vector at the terminal. The vector
must have the same dimensionality as the design
data set of the logic. Prompting for
measurements will continue until the user has
typed in the correct number of measurements.)

SELECT THE MODE OF OPERATION (1 THRU 4)
TO USE FOR LOGIC EVALUATION: /4/

OPTIONS:
(1) USE A VECTOR FROM THE CURRENT DATA SET
(2) TYPE IN THE VECTOR AT THE TERMINAL
TYPE A '1' OR A '2' DEFENDING ON THE DESIRED OPTION: /2/

THE VECTOR MUST HAVE 2 MEASUREMENTS
MEASUREMENTS SHOULD BE TYPED ONE PER LINE
TYPE IN MEASUREMENT 1 OF THE VECTOR: /10/
TYPE IN MEASUREMENT 2 OF THE VECTOR: /20/
THE VECTOR WAS ASSIGNED TO LOGIC NODE 5 CLASS ANOD

218

l a , i n I I I " n llu l . .. . " - - ,1.



LTIEN A N E

CCIMIAI'D NIAME: LTRENAME

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

Change the name of an OLPARS logic tree.

USER I11TERACTION:

The name of the logic tree to be changed is
requested from the user, along with the new
name of the tree.

EXAMPLE(S):

The following example shows the tree 'GRAINS' being
renamed to 'CEREALS'.

Session with SHORT prompts

FROM? /GRAINS/
TO? /CEREALS/

(PRCM FT NOTES: *

If the new name of the tree is already in use, the
user is requested for permission to destroy the
existing tree.

In the following example, the tree 'CEREALS' already

exists.

Session with LONG prompts

ENTER NAME OF TREE TO BE RENAMED - /GRAINI1/
ENTER NEW NAME OF TREE - /CEREALS!
THE NAME 'CEREALS' IS III USE IN YOUR DIRECTORY;
DO YOU WANT TO DESTRCY THE LOGIC WITH THAT NAME (Y/N)?
/Y/

219



MAKETREE

CCMY Al.E' NAME: MAKETREE

CATEGORY: UTILITY CCMMAN'D

FUNCTIONAL DESCRIPTIO1N:

MAKETREE is used to create a new data tree from nodes of
existing data trees.

To CCMBINE trees:

MAKETREE can create a new data tree with copies of
the lowest nodes of up to ten trees. In the process,
if any display symbols are duplicated, new display
symbols will be substituted (display symbols of
lowest data nodes must always be unique).

To MERGE trees:

MAKETREE can create a new data tree by merging all of
the vectors from similarly-named nodes of various
trees into nodes (with the same names) in the new
tree. A maximum of ten trees can be merged.

USER INTERACTION:

The user is asked:

1. for the name of the new data tree
2. whether to combine or merge existing data trees
3. for the number of trees to use in the creation
4. for the names of existing data trees to be used

(5. When merging trees:
a. if vector identifiers are to be resequenced
b. if printer listing is desired of

changed vector identifiers)

220 V

6 J I' -



MAKETREE (continued)

EXAMPLE(S):

In the following example, the data trees GRAINSI and
GRAINS2 are going to be merged into the new tree,
GRAINS3 (see diagram). Note that the node names and
the number of lowest nodes (4) are identical in both
GRAINSI and GRAINS2 (GRAINSI has a total of 6 nodes,
including the intermediate nodes (marked '0'), while
GRAINS2 has only 5; this example showL that the
structure of the two data trees being merged is
irrelevant to the merging operation). In the diagram,
the numbers in parenthesis represent the number of
vectors residing at each of the data nodes.

GRAINSI + GRAINS2 GRAINS3
0 0 0

/ i/ \ \ / /\ \
soy 0 rye s a w r s a w r
(6) /\ (9) o 1 e y o 1 e y

alfa weat y f a e y f a e
(21) (11) a t a t

(10) (5) (8) (6) (16)(26)(19)(15)

Session with SHORT prompts

TREENAME FOR NEW TREE? /GRAINS3/

THE DATA TREE CAN BE CREATED BY
COMBINING (C) OR MERGING (M)
NODES FROM EXISTING TREES.

YOUR CHOICE? /M/
NUMBER OF TREES? /2/
TREENAME? /GRAINSI/
TREENAME? /GRAINS2/
RESEQUENCE VECTOR IDENTIFIERS (Y/N)? /YI

PRINT NEW SEQUENCE (Y/N)? /Y/

(PROMPT NOTES: *****************************

After the 'new tree name' prompt has been answered
and the given tree is found to excist, MAKETREE asks
the user if the tree is to be destroyed.

If a component data tree does not exist, MAKETREE
indicates this and reprompts the user for another name.

When '1' is specified as the number of component trees
to make up the new data tree, the user is effectively
making a copy of the original data tree. In this case,

the 'merge mode' is the suggested method of tree

221

*1i



MAKETREE (continued)

creation because it will be execute faster than the
'combine mode'.

NOTE

The resequence output obtained from merging vectors
shows which trees contributed vectors to the new data
tree, from which class the vectors came, the old
vector identifier, and the new vector identifier.
(e.g., Vectors from data tree 'GRAINSI

CLASS (soy ) PREVIOUS ID.= 23 NEW ID.= 5)

In the following example, the two data trees, GRAINSI
and GRAINS2, are to be combined to form the new data
tree, GRAINS3 (see diagram). The symbol '0', occurring
by itself, represents an intermediate data node (i.e.,
not a lowest node). The data structure of the component
trees is irrelevant to MAKETREE.

GRAINS1 + GRAINS2 GRAINS3
0 0 0

l-- - /-7-7"-\-7\
soy 0 rye / \ s a w r o c

/ \ oats corn o 1 e y a o
alfa weat y f a e t r

at sn

Session with LONG prompts

ENTER A NAME FOR THE NEW TREE THAT YOU ARE CREATING.
(8 CHARS. MAX.) - /GRAINS3/

MODES OF OPERATION THAT CAN BE U2TD

(COMBINE) ALL LOWEST NODES OF DIFFERENT TREES
ARE PLACED UNDER THE SENIOR NODE OF
THE NEW TREE

(MERGE) SAME-NAMED LOWEST NODES OF DIFFERENT TREES
ARE MERGED TOGETHER AND PLACED UNDER THE
SENIOR NODE OF THE NEW TREE

YOUR CHOICE? Ic/
ENTER THE NUMBER OF TREES TO BE USED
IN MAKING UP THE NEW TREE - /2/
ENTER THE NAME OF A TREE TO BE USED IN MAKING
UP THE NEW TREE - /GRAINS1/
ENTER THE NAME OF A TREE TO BE USED IN MAKING
UP THE NEW TREE - /GRAINS2/

222

"I __ __



COMMAND NAME: 
MATRIX 

MTI

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

MATRIX deals with the deletion and entering of
transformation matrices into the saved transformation
matrix (SM) file. MATRIX displays a list of options and
asks the user to select one. By selecting the appropriate
option, the user may (1) delete a previously saved matrix,
(2) print a line printer listing of one or all previously
saved matrices, (3) dump at the terminal one or all
previously saved matrices, (I4) list at the terminal the
matrix descriptions of all previously saved matrices, or
(5) enter a new matrix into the file.

USER INTERACTION:

The user is asked to select an option number from the list
of options. The adaitional interaction for each option is
as follows:

Option 1: The user is asked for the name of the matrix to be
deleted. An asterisk (*) will indicate that all saved
matrices are to be deleted.

Option 2: The user is asked for the name of the matrix to be
printed at the line printer. An asterisk (*) will
indicate that all saved matrices are to be printed.

Option 3: The user is asked for the name of the matrix to be
dumped at the terminal. An asterisk (*) will indizate
that all saved matrices are to be dumped.

Option 4: No additional interaction.

Option 5: The user is asked for the new matrix's name, type
(either normal or eigenvector transformation matrix),
dimensionality, and from where the matrix is to be
entered (either directly from the terminal or from a
file). If the matrix is to be entered from a file, the
user is asked for the file name. Otherwise, the matrix
is to be entered one row vector at a time.

223



:A.R I Y(continued)

If a program has terminated abnormally, or tne program :2

such that the information on the screen shoulf. not Ce
erased immediately, the user will be asked if (s)he -iants
to continue. If so, tne option list .;ill be redisplayec,
if not, the program will end. Otherwise, the option list

will automatically be redisplayed and the user will be
prompted for an option number.

EXANFLE (S ):

The examples which appear below will follow a logical orcer
most likely to be used when entering a matrix and
maintaining the SM file.

The first example will involve entering (directly from the
terminal) the sample eigenvector transformation matrix
which follows:

2.C 1.C 0.C .2 4.

MATRIX! 1.0 2.0 3.0 4.C 5.C

1.2 4.9 7.C 8.5 6.1

Example (2) will list the descriptions of all matrices in
the file, making sure that the matrix was successfully

saved, and assuming that the SM file was empty before
MATRIX! was entered. Example (3) will display the entries

of MATRIXI at the screen. Example (4) will involve making
a line printer listing of MATRIX!. Example (5) will celete
MATRIX1.

After the first example below, the option list will be

indicated by the line (OPTION LIST).

224

14 .14



XATRIX (continuea)

Session with SHORT prompts

EXA.FLE I:

<ERASE SCREEN>
SAVED TRAESFCRMATION MATRICES

1. LELETE
2. PR INT
3. DUMP
4. LIST
5. ENTER

OPTION NUMBER? /5/

<ERASE SCREEN>
EI;TER A MATRIX

MATRIX NAME? /MATRIXI/
TYPE OF TRANSFORMATION? (C/E) /E/
DIM ENS ION ? /5/
MATRIX ENTERED FROM TERMINAL OR FILE? (T/F) /T/

<ERASE SCREEN>

ENTER THE MATRIX

ROW 1> 2.C 1.0 O.C 3.2 4.3

ROW 2> I.C 2.0 3.C 4.0 5.0

ROW 3> 1.2 4.9 7.0 8.5 6.1

RCW 4> <CR>

<ERASE SCREEN>

(OPTION LIST)

(PROM PT NOTES: ****** *****************

if the SM file is full (i.e., contains ten saved
matrices), the message 'THERE IS 10 AVAILABLE SPACE
LEFT IN THE SM FILE TO ENTER A NEW MATRIX' will be
printed and the user will be asked if (s)he wants to
continue.

MATRIX NAME
The matrix name should be from 1 to 8 characters
in length, where the first character is alphabetic
and the rest are alphanumeric. The name must also
be unique within the file.

225



:KATRIX (continued)

t.ATRIX ENTEREE FROM A FILE
If the matrix is to be entered from a file, the
file must already exist and contain only the matrix
to be saved.

MATRIX ENTEREE FROM THE TERMINAL
If the matrix is to be entered directly from the
terminal, and the user asks to quit before any
elements have been entered, the message 'N MATRIX
HAS BEEN SAVEL' is printed and the user is asked if
(s)he wants to continue.

If the user asks to quit before the present row
vector has been filled to the specified dimension,
the vector is filled with zeros and the next row
prompt appears.

if the user asks to quit directly after a row
prompt appears, this is a normal termination. All
previous vectors have been saved, and the option
list is displayed.

EXAMPLE 2:

(OPTION LIST'
OPTION NUMBER? /4/

<ERASE SCREEN>
MATRIX NAME NO. OF ROWS DIMENSION

MATRIXI 3 5

CCNTINUE? /Y/

<ERASE SCREEN>
(OPTION LIST)

(PRCM PT NOTES:

If the SM file is empty, the message 'THERE ARE NO
PREVIOUSLY SAVED MATRICES IN THE FILE' will be typed
and the user will be asked if (s)he wants to go on.

226



IATRIX (continued)

XAM FLE

(0 FTION LIST)
O TIC1. 'IUI.BER? /3/

<ERASE SCREEN>
DUMP SAVED MATRIX

MATIRiIX IiAME? /iV:ATRIXi/

<ERASE SCREEN>
NAME = 'MATRIXI ' NO. CF ROWS 3 DIMENSICN 5

MATRIX (LISTED BY ROW VECTORS) -

PCW 1> 2.C 1.0 0.C 3.2 4.2

ROW 2> 1.C 2.C 3. C 4.0 5.C

ROW 7> 1.2 4.9 7.0 8.5 6. 1

CCNTINUE? /Y/

<ERASE SCREEN>
(OPTION LIST)

(PRCM PT NOTES:

If the SM file is empty, the message 'THERE ARE NO
PREVIOUSLY SAVED MATRICES IN THE FILE' will be
printed and the user will be asked if (s)he wants to
continue.

If a non-existing matrix name has been entered, the
message printed is 'MATRIX HAS NOT BEEN FCUND IN
THE FILE' where is the matrix name input by the
user. The user will be reprompted for the name.

If the screen if full and the whole matrix has not
yet been displayed, the user will be asked if (s)he
wants to see the next page. After a complete matrix
has been displayed, if all matrices are to be shown,
the user is asked if (s)he wants to see the next
matrix. If only one matrix was to be seen, the user
is asked if (s)he wants to continue.

* ************2********************************* *****

227



iTRIX (continued)

EXANPLE 4:

(OFTION LIST)
OPTION NUMBER? /2/

<ERASE SCREEI>

PRINT SAVED MATRIX

MATRIX NAME? /ATRIX1/

<ERASE SCREEN>
(OPTION LIST)

(PRCM PT NOTES: *********************************

If the SM file is empty, the message 'THERE ARE NO
PREVIOUSLY SAVED MATRICES IN THE FILE' will be typed
and the user will be asked if (s)he wants to go on.

If a non-existing matrix name has been entered, the
message printed is 'MATRIX HAS NOT BEEN FOUND IN
THE FILE'. The user will be reprompted for the name.

EXAMPLE 5:

(OPTION LIST)
OPTION NUMBER? /I/

<ERASE SCREEN>

DELETE SAVED MATRIX

MATRIX NAME? /MATRIX1/

<ERASE SCREEN>
(OPTION LIST)

(PROMFT NOTES: *

If the SM file is empty, the message 'THERE ARE NO
SAVED MATRICES IN THE FILE' will be printed and the
user will be asked if (s)he wants to continue.

If a non-existing matrix name has been entered, the
message printed is 'MATRIX ---- HAS NOT BEEN FCUND IN
THE FILE'. The user will be reprompted for the name.

228•1



M.ATR IX (continued)

Session with LCNC prompts

Due to the length of this program description,
no examples will be given with long prompts.
However, the option list with long prompts is
as follows:

SAVED TRALSFCRMATION '>IATRICES

1. FELETE - DELETE A SAVEr MATRIX FRCM THE FILE.

2. FRINT - MAKE A LINE PRINTER LISTING OF THE NAM.E,
TYPE, DIHENSION, AND ENTRIES OF A SAVEE
MATRIX.

3. LUMP - DISPLAY AT THE TERMINAL THE NAME, TYPE,
DIMENSION, AND ENTRIES OF A SAVED MATRIX.

4. LIST - DISPLAY AT THE TERMINAL THE NAMES, TYPES,
AND DIMENSIONS OF ALL SAVED MATRICES IN
THE FILE.

5. ENTER - SAVE A MATRIX.

OPTION NUMBER? /<CR>/

229



MATXFRM

COMMAND NAME: MATXFRM

CATEGORY: TRANSFORMATION COMMAND

FUNCTIONAL DESCRIPTION:

MATXFRM will perform either a normal, eigenvector or
matrix transformation using a saved matrix chosen by
the user from the saved transformation matrix (SM)
file to create a new data tree. The type of saved
matrix will determine which type of transformation
will be performed.

The transformation itself will involve matrix
multiplication between the current data set and the
specified saved (or transformation) matrix. By the
definition of matrix multiplication, the dimension
of the current data set and the transformation
matrix must be equal.

If an eigenvector or matrix transformation is to
be performed, the dimension of the newly created data
tree will be equal to the number of vectors found in
the transformation matrix. Note, if there is only 1
vector in the transformation matrix, the resultant
tree will have scalar values for vector, mean, and
covariance entities.

USER INTERACTION:

The user is asked for the name of a saved transforma-
tion matrix and a new tree name.

EXAMPLE(S):

The following examples assume that MATRIXI is the name
of the saved transformation matrix chosen for use in
the computations and NEWTREE is the name of the new
tree to be created.

Session with SHORT prompts

MATRIX NAME? /MATRIX1/

NEW TREE NAME? /NEWTREE/

230



MATXFRM continued)

(PROMPT NOTES:

Matrix Name

The matrix name entered must correspond to an
existing matrix stored in the saved transformation
matrix (SM) file. If no such matrix matrix exists,
the user will be reprompted for another matrix name.

If an eigenvector transformation matrix has been
chosen, and the number of eigenvalues used to
compute this matrix is 1, the message 'BECAUSE OF THE
DIMENSIONALITY OF THE CHOSEN SAVED MATRIX, THE RESULT
OF THE EIGENVECTOR TRANSFORMATION WILL BE A SIMPLE
SCALAR VALUE' is printed and the user is asked if
(s)he wants to continue.

When a new data tree has successfully been created,
the message printed is 'DATA TREE ' ---- ' HAS
SUCCESSFULLY BEEN CREATED' where is the name of
the new data tree.

Session with LONG prompts

ENTER THE NAME OF THE SAVED MATRIX TO
BE USED IN THE MATRIX TRANSFORMATION - /MATRIX1/

TYPE IN NAME TO GIVE TO THE OLPARS DATA
TREE THAT WILL BE CREATED AS A RESULT
OF THE TRANSFORMATION (8 CHARS. MAX.) - /NEWTREE/

231



MEASXFRM

COMMAND NAME: MEASXFRM

CATEGORY: TRANSFORMATION COMMAND (system dependent)

FUNCTIONAL DESCRIPTION:

MEASXFRM gives the user the capability of transforming
the current data set into a new data set. This
transformation takes the form of FORTRAN statements
which are a function of the measurements from the
original data set (e.g., NM(1) = OM(1) + OM(2) states
that measurement 1 of the new data set equals the sum
of measurements 1 and 2 of the old data set). The user
creates a FORTRAN subroutine called XFORM using the
following template:

SUBROUTINE XFORM (OM, OLNGTH, NM, NLNGTH)

C THIS IS A MEASUREMENT TRANSFORMATION SUBROUTINE
C USED BY THE OLPARS 'MEASXFRM' COMMAND.
C
C (NOTE, WHEREVER THE SYMBOL OF TWO QUESTION MARKS
C APPEAR, THE DIMENSION OF THE NEW VECTOR MUST BE
C SUPPLIED BY THE USER.)

INTEGER OLNGTH, NLNGTH
REAL OM(OLNGTH), NM(??)

C
C (( TELL MEASXFRM THE SIZE OF THE NEW DATA SET )))

IF(NLNGTH .GT. 0) GOTO 1000
NLNGTH : ??
RETURN

C ENDIF
1000 CONTINUE
C
C *' USER SUPPLIED VECTOR TRANSFORMATION
C SHOULD APPEAR BELOW *
C

transformation statements

C
C " USER SUPPLIED VECTOR TRANSFORMATION
C SHOULD APPEAR ABOVE "
C

RETUR1N
END

232

L.



MEASXFRM (continued)

where

OM represents the old measurement vector of length
OLNGTH, and

NM represents the new measurement vector of length
NLNGTH.

NLNGTH is initially an output variable (tells MEASXFRM
the size of the new vectors). On all subsequent calls
to XFORM; OM, OLNGTH, and NLNGTH are considered input
variables, while NM is an output variable of XFORM.

Note, MEASXFRM can be used in excess measurement mode.

USER INTERACTION:

User is asked:

1. For the name of the transformation.
(name of the file containing an 'XFORM' subroutine)

2. If the transformation exists.
a. If the transformation is to be altered.
b. For the name of the editor to be invoked

to edit the existing transformation.

3. (When a new transformation is being created)
a. For the number of measurements per vector

in the new data set.
b. For the name of the editor to be invoked

to edit the new transformation.
c. If the compilation was succesful.
d. If the task build (linking) was succesful.

4. Name of the data tree being created.

5. If the transformation is to be saved.

233



MEASXFRM (continued)

EXAMPLE(S):

In the following example, the current data set, GRAINS,
contains 12 measurements; the first of which is really
a scaling factor for the rest of the measurements.
The resulting tree, XGRAINS, will only contain 11
measurements after the transformation takes place.

>*ENTER TRANSFORMATION NAME [S R:O-91: /FORGRAINS/
>*DOES TRANSFORMATION ALREADY EXIST (Y/N)? [S R:O-1]: IN/
>*ENTER DIMENSIONALITY OF NEW DATA SET CD R:O-1501: /11/
>*TYPE IN NAME OF EDITOR TO BE USED CS]: /EDI/
> EDI FORGRAINS.FTN

(user edits file to place in desired transformation)

> F4P FORGRAINS,FORGRAINS/-SP:FORGRAINS/-WR/-TR/-CK
>*WAS COMPILATION SUCCESFUL (Y/N)? (S R:O-1]: /Y/

The following task build takes approximately
2 minutes on a PDP 11/45

> TKB @FORGRAINS.BLD
>*TASK BUILD SUCCESSFUL (Y/N)? [S R:0-1: /Y/
> PIP FORGRAINS.BLD;*,FORGRAINS.ODL;*/DE
> RUN FORGRAINS

NEW TREE NAME? /XGRAINS/

TRANSFORMATION COMPLETE

>*SHOULD TRANSFORMATION BE SAVED (Y/N)? [S R:0-1]: /N/

(PROMPT NOTES:

In the above example, the lines beginning with '>*'
are prompts given by the DEC command processor found
on RSX11M operating systems. A command file is being
executed to guide the operation of ,MEASXFRM,.

If at any time a prompt receives the OLPARS standard
exit response, the command file will exit, as expected.
The command file, however, does not have the usual
long and short prompt convention (the resulting task
does have the long-short prompt convention).

The '[S R:number-number' at the end of each prompt
tells the user that an alphanumeric string (S) (or a
decimal number (D), as in the dimensionality prompt) is
expected by the prompt, with a length (or numeric
value as in 0-150) in the specified range (R).

234

L ii i • I I - -- -' -, -



MEASXFRM (continued)

The editor can be any editor that is available on
the local operating system.

The RSX11M command file expects the F4P FORTRAN
compiler supplied by Digital Equipment Corp. The
slashes (M) that occur in that line are not surrounding
user responses, but switches that the compiler uses to
modify its standard mode of operation.

23

235

*14 _,_ _.__ _.,_



MOVEC

COMMAND NAME: MOVEC

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

MOVEC permits the user to reorient data vectors by moving
their projected points on a two-space coordinate vector
scatter display, which is currently displayed at the
terminal.

This routine is intended for use with trees which contain
nearest neighbor reference patterns.

USER INTERACTION:

User identifies the vector to be moved by placing the
graphics cursor 'over' the corresponding display
character and typing in any alphabetic character
(except 'Q' or 'R').

After the vector is identified, the user moves the
graphics cursor to the position the vector is to be
placed, and types in another alphabetic character
(except 'Q').

The character 'Q', typed after the first prompt,
terminates (quits) the process. The character 'R'
redisplays the current display.

The character 'Q', typed after the second prompt,
sends the program back to the first prompt to start
vector selection over (i.e., the current vector
chosen is not the one to be moved). The character
'R', typed after the second prompt, places the vector
at its new location and redisplays the current display.

EXAMPLE(S):

In the example which follows please note the meaning of
two symbols:

means 'position the graphics cursor'
K means 'any alphanumeric key'

(except 'Q' or 'R')

CHOOSE ONE K/
NEW LOCALE K/
CHOOSE ONE /Q/

236

#L



MOVEC (continued)

(PROMPT NOTES:

.. the example, the 'CHOOSE ONE' prompt is given
to notify the operator that it is time to choose the
vector to be moved. The operator moves the graphics
cursor to the position of the vector that is going to
be reoriented (i.e., 'over' the vector display symbol
found on the terminal display) and types in an
alphanumeric character. A rectangle is drawn around the
display symbol of the vector that is closest to the
given point. In the example, the correct vector was
chosen by MOVEC. Therefore, when the 'NEW LOCALE'
prompt appeared, the operator placed the cursor to
the desired vector position and entered another
alphanumeric character. (The vector display symbol of
the moved vector is immediately displayed to the user
at the newly requested position.)

If no vector can be found at the user's requested
position, (s)he will be notified by a 'NOT FOUND'
message in the lower left hand portion of the display.

237



NAMELOG

COMMAND NAME: NAMELOG

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

?,AMELOG creates a new logic tree and makes it the

'current logic' being used.

USER INTERACTION:

The user is asked the name of the new logic to be
created. If the tree already exists, the user is
asked if the tree is to be destroyed.

EXAMPLE(S):

In the following example the new logic tree 'NEWLOGIC'
is created and becomes the 'current logic'.

Session with SHORT prompts

TREENAME? /NEWLOGIC/

(PROMPT NOTES: *

The treename that is entered by the user must be a
'legal' treename. NAMELOG will print out an
error message if this condition is not met and
prompting will continue until a valid treename is
entered.

In the following example the tree 'NEWLOGIC'
already exists and the user decides to destroy it.

Session with LONG prompts

ENTER THE NEW LOGIC TREE NAME (MAXIMUM 8 CHARACTERS)
/NEWLOGIC/

THE NAME "NEWLOGIC"
IS IN YOUR DIRECTORY;
DO YOU WISH TO DESTROY THE LOGIC WITH THAT NAME (Y/N)?
/Y/

238



NMEVAL

CCMMAND NAME: NMEVAL

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

NMEVAL evaluates nearest mean vector logic at a user
chosen logic node. (See NMV for additional information).

This command can only be used after NMV has created logic
in the current logic tree, or NMVMOD has modified
existing NMV logic.

NOTE, if this command is used twice at the same logic
node, without deleting the existing logic, a confusion
matrix of zeroes will be created.

USER INTERACTION:

The user is asked which NMV logic node should be
evaluated.

EXAMPLE(S):

In the following example, the user has decided to
evaluate vectors at NMV logic node number 3.

Session with SHORT prompts

LOGIC NODES WITH NMV LOGIC

23
NODE NUMBER? /3/

(Confusion matrix is displayed.)
(The program puts up the menu)

In this example the user decides to evaluate vectors

at logic node 3.

Session with LONG prompts

LOGIC NODES WITH NMV LOGIC

23
ENTER THE LOGIC NODE YOU WISH TO EVALUATE - /3/

(Confusion matrix is displayed.)
(The program puts up the menu)

239



NMV

COMMAND NAME: NMV

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

NMV creates nearest mean vector logic for the current
data set. That is, when logic evaluation occurs, each
data vector will be assigned to the class whose mean is
closest to that vector.

One of four methods for computing a i'distance"l from the
vector to each class mean can be chosen. They are the
Euclidean distance, a class variance weighted distance,
Mahalanobis distance, and a Quadratic Classifier*.

A rejection region may be assigned to each class (mean).
When a vector is being classified, the distance between
it and the nearest mean of a class must be less than the
reject distance of that class. Otherwise, the vector is
not associated with the class (it is rejected). The
reject region is chosen in units of standard deviations.
Note, reject distances are not available for the
Quadratic Classifier because this metric is not in terms
of distance.

To evaluate the newly created logic, use NMEVAL.

*See the paper entitled 'Classification of Atypical
Cells in the Automatic Screening for Cervical Cancer'
by Oliver et. al. in the IEEE Proceedings of the
Conference on Pattern Recognition and Image Processing,
May 31 - June 2, 1978, pp. 476-'482.

USER INTERACTION:

The user is asked (1) if all vectors from the classes
which lie at the logic node should be used, (2) whether
there are measurements to be ignored, (3) which distance
option is desired, and (4) which reject strategy to use.

EXAMPLE(S):

In the following example, the user has decided to use
only those vectors which lie at the logic node, to ignore
the second measurement, to use the weighted euclideandistance, with no reject regions.

240



NMV (continued)

Session with SHORT prompts

USE ALL VECTORS OF CLASSES AT INCOMPLETE LOGIC NODE? IN/
IGNORE MEASUREMENTS (YIN)? /Y/
MEASUREMENT #I (END WITH 0)? /2/
MEASUREMENT #I (END WITH 0)? /0/
DISTANCE OPTION (1-4)? /2/

REJECT DISTANCE OPTIONS

1) NO REJECT DISTANCES
2) OVERALL MULTIPLIER (WITH EACH CLASS STD)
3) SEPARATE MULTIPLIERS (FOR EACH CLASS STD)
4~) OVERALL MULTIPLIER (WITH THE AVERAGE CLASS STD)

REJECT DISTANCE OPTION - /l/

(The program puts up the menu)

(PROMPT NOTES:

The user must make sure that the last ignore measurement
prc~1Apt entered is a zero, and not <CR> or the program
will exit.

Reject Distance Notes

"Overall" multiplier with each class standard deviation
means that the value you type in is applied to each class
standard deviation. If you type in a value of two (2)
then vectors lying outside the region represented by two
standard deviations from the nearest class mean will be
rejected.

"Separate" multipliers for each class standard deviation
means that you can select a standard deviation constant
to be applied to each class. For instance, if there are
three classes, A, B, and C, you can select a reject
region of 1 standard deviation to be applied to class A,
of 2.5 to be associated with class B, and one of 3.5 to
be applied to class C.

"Overall" multiplier with the average class standard
deviation means that only a single value is applied to
the average value of all the class standard deviations,
that is, if there are two classes, A and B, and the
standard deviation of class A is 25 and the standard
deviation of class B is 15, then the multiplier typed in
will be applied to the average of these two values, 20.
This calculated standard deviation value is used for

241



NMV (continued)

all classes. With this option the reject distance
is the same distance for all classes.

If separate multipliers are desired for the reject
regions, they are requested by the program one at a time.
Beware of requesting help while entering the multipliers,
for this wipes out all multipliers entered and begins the
entire reject sequence again.

In this example the user decides to use only those
vectors that lie at the logic node, ignore no
measurements, use the Mahalanobis distance option, with
a reject distance of 2.5 standard deviations.

Session with LONG prompts

DO YOU WANT TO USE ALL THE VECTORS OF
THE CLASSES THAT LIE AT THE INCOMPLETE LOGIC NODE
IN LOGIC CALCULATIONS
('NO' MEANS USE ONLY THOSE VECTORS THAT
LIE AT THE LOGIC NODE) (Y/N)? /N/
DO YOU WISH TO HAVE SOME MEASUREMENTS IGNORED (Y/N) - /N/
ENTER THE OPTION YOU WOULD LIKE

1 - EUCLIDEAN DISTANCE
2 - WEIGHTED VECTOR
3 - MAHALANOBIS DISTANCE
4 - QUADRATIC CLASSIFIER

- /3/

REJECT DISTANCES MAY BE ASSIGNED TO THE CLASSES. WHEN
A VECTOR IS BEING CLASSIFIED, THE DISTANCE BETWEEN IT
AND THE NEAREST MEAN OF A CLASS MUST BE LESS THAN THE
REJECT DISTANCE OF THAT CLASS. OTHERWISE THE VECTOR
IS REJECTED. THE REJECT MULTIPLIER(S) ENTERED ARE
APPLIED TO THE STANDARD DEVIATION (STD) OF EACH CLASS
AS INDICATED BELOW.

REJECT DISTANCE OPTIONS

1) NO REJECT DISTANCES
2) OVERALL MULTIPLIER (WITH EACH CLASS STD)
3) SEPARATE MULTIPLIERS (FOR EACH CLASS STD)
4) OVERALL MULTIPLIER (WITH THE AVERAGE CLASS STD)

REJECT DISTANCE OPTION - /2/
ENTER THE MULTIPLIER - /2.5/

(The program puts up the menu)

242



NMVMOD

COMMAND NAME: NMVMOD

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

NMVMOD modifies nearest mean vector logic at a user
chosen logic node. The user has the choice of modifying
the distance option and/or the reject criteria.

This command can only be used after NMV has created logic
in the current logic tree.

To evaluate the logic use NMEVAL.

USER INTERACTION:

The user is asked (1) which NMV logic node should be
modified, (2) which distance option is desired, and
(3) which reject strategy to use.

EXAM PLE(S):

In the following example, the user has decided to
modify NMV logic node number 3, and use the weighted
euclidean distance, with no reject regions.

Session with SHORT prompts

LOGIC NODES WITH NMV LOGIC

2 3
NODE NUMBER? /3/
DISTANCE OPTION (1-4)? /2/
REJECT DISTANCE OPTIONS

1) NO REJECT DISTANCES
2) OVERALL MULTIPLIER (WITH EACH CLASS STD)
3) SEPARATE MULTIPLIERS (FOR EACH CLASS STD)
4~) OVERALL MULTIPLIER (WITH THE AVERAGE CLASS STD)

REJECT DISTANCE OPTION - /l/

(The program puts up the menu)

243



NMVMOD (continued)

(PROMPT NOTES: *********************

If separate multipliers are desired for the reject

regions, they are requested by the program one at a time.
Beware of requesting help while entering the multipliers,
for this wipes out all multipliers entered and begins the
reject sequence over.

In this example the user decides to modify logic node
3, use the mahalanobis dI stance option, with an overall
reject multiplier of 2.5 standard deviations.

Session with LONG prompts

LOGIC NODES WITH NMV LOGIC

23
ENTER THE LOGIC NODE YOU WISH TO MODIFY - /3/
ENTER THE OPTION YOU WOULD LIKE

1 - EUCLIDEAN DISTANCE
2 - WEIGHTED VECTOR
3 - MAHALANOBIS DISTANCE
4 - QUADRATIC CLASSIFIF"'

- /3/

REJECT DISTANCES MAY BE ASSIGNED TO THE CLASSES.
WHEN A VECTOR IS BEING CLASSIFIED, THE DISTANCE BETWEEN
IT AND THE NEAREST MEAN OF A CLASS MUST BE LESS THAN THE
REJECT DISTANCE OF THAT CLASS. OTHERWISE THE VECTOR IS
REtiETED. THE REJECT MULTIPLIER(S) ENTERED ARE APPLIED
TO THE STANDARD DEVIATION (STD) OF EACH CLASS AS
INDICATED BELOW

REJECT DISTANCE OPTIONS

1) NO REJECT DISTANCES
2) OVERALL MULTIPLIER (WITH EACH CLASS STD)
3) SEPARATE MULTIPLIERS (FOR EACH CLASS STD)
4) OVERALL MULTIPLIER (WITH THE AVERAGE CLASS STD)

REJECT DISTANCE OPTION - /2/
ENTER THE MULTIPLIER

- /2.5/

(The program puts up the menu)

244



NNMOD

COMMAND NAME: NNMOD

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

NNMOD modifies nearest neighbor logic at a user chosen
logic node. The user has the option of changing the

1) number of neighbors being used during evaluation,

2) the reference pattern tree to be used during
evaluation, and

3) the set of measurements to be ignored
during evaluation.

This command can only be used after the NRSTNBR command
has created nearest neighbor logic in the current logic
tree.

USER INTERACTION:

The user is asked:

1. which nearest neighbor CNN) logic narde should be
changed (providing there is more than one NN logic
in the current logic tree).

2. for the modification option to be used

(a) neighbor count modification-

(queried for neighbor count)

(b) use of different reference pattern tree-
(queried for tree name)

Cc) measurements to be ignored-
(asked if any measurements are to be
ignored and for index of measurement to
be ignored)

245

. . .......



NNMOD (continued)

EXAMPLE(S):

In the following example, the operator has finished
creating nearest neighbor logic by using the NRSTNBR
logic design command. However, the number of nearest
neighbors desired during a test set evaluation is
three (NRSTNBR only uses 1 nearest neighbor). Also,
measurement 4 of the test set is to be ignored during
evaluation.

Session with SHORT prompts

1. CHANGE NEIGHBOR COUNT (CURRENT = 1)
2. CHANGE REFERENCE PATTERN TREE NAME (CURRENT = cnntest)
3. CHANGE MEASUREMENTS IGNORED (ALL MEAS. IN USE)

MODIFICATION OPTION (1-3)? /l/
NEIGHBOR COUNT (1-9)? /3/

(screen erased)

1. CHANGE NEIGHBOR COUNT (CURRENT 3)
2. CHANGE REFERENCE PATTERN TREE NAME (CURRENT = cnntest)
3. CHANGE MEASUREMENTS IGNORED (ALL MEAS. IN USE)

MODIFICATION OPTION (1-3)? /3/
IGNORE MEASUREMENTS (Y/N)? /Y/
MEASUREMENT NO. (END WITH 0)? /4/
MEASUREMENT NO. (END WITH 0)? /0/

(screen erased)

1. CHANGE NEIGHBOR COUNT (CURRENT 3)
2. CHANGE REFERENCE PATTERN TREE NAME (CURRENT cnntest)
3. CHANGE MEASUREMENTS IGNORED

MODIFICATION OPTION (1-3)? /<CR>/

(PROMPT NOTES:

The current number of neighbors to use in evaluation,
and the current reference pattern tree name can be
seen in parenthesis to the right of the corresponding
option. The message '(ALL. MEAS. IN USE)' will be
found to the right of the change-measurements-ignored
option only when there are no measurements currently
being ignored.

If a 'no' answer is given to the ignore-measurements
prompt, all measurements are used in subsequent
evaluations.

246

°d - --



NNMOD (continued)

When a new reference pattern tree is going to be used,
NNMOD checks to see if the tree exists and if the
number of measurements in the reference pattern tree
is identical to that of the design data set. NNMOD
does not verify that the classes in the reference
pattern tree are identical to the classes present
at the logic node. This check is made at logic
evaluation time.

The OLPARS standard command exit response (<CR>)
is the only way NNMOD can be halted.

The next example shows the operator requesting a
different reference pattern to be used during a
subsequent logic evaluation.

Session with LONG prompts

1. CHANGE NEIGHBOR COUNT (CURRENT 3)
2. CHANGE REFERENCE PATTERN TREE NAME (CURRENT = cnntest)
3. CHANGE MEASUREMENTS IGNORED

MODIFICATION OPTION (1-3)? /2/
TYPE IN NAME OF NEAREST NEIGHBOR REFERENCE PATTERN TREE
TO BE USED IN SUBSEQUENT EVALUATIONS - /REFPAT/

(screen erased)

1. CHANGE NEIGHBOR COUNT (CURRENT 3)
2. CHANGE REFERENCE PATTERN TREE NAME (CURRENT REFPAT)
3. CHANGE MEASUREMENTS IGNORED

MODIFICATION OPTION (1-3)? /<CR>/

247



NORMXFRM

COMMAND NAME: NORMXFRM

CATEGORY: Transformation Command

FUNCTIONAL DESCRIPTION:

NORMXFRM creates a new data tree which is a normalized
version of the current data set. As a result of the
transformation, the variance of each measurement in
the new data tree becomes one.

USER INTERACTION:

The user is prompted for the name of the OLPARS data
tree to be created. After the transformation is
complete, the user is asked if s(he) wishes to save
the transformation matrix (vector). If the user
responds with 'Y' (for yes), s(he) is then asked to
enter a name for the transformation matrix to be saved.

EXAMPLE(S):

Session with SHORT prompts

The following example assumes the user has a tree in
her/his directory called 'NEWTREE'. The user decides
to destroy the existing tree 'NEWTREE' so that the
name 'NEWTREE' can be used for the tree resulting
from the transformation. The example also assumes
that the matrix 'MATRIXA' exists in the SM file.

NEW TREE NAME? /NEWTREE/
THE NAME "NEWTREE" IS IN USE; DESTROY (Y/N)? /Y/
TRANSFORMATION COMPLETE
SAVE TRANSFORMATION MATRIX (Y/N)? /Y/
MATRIX NAME? /MATRIXA/
MATRIX 'MATRIXA' ALREADY EXISTS IN THE FILE
MATRIX NAME? /MATRIXB/

(PROMPT NOTES: *********** ************

Tree Name -

If the tree name entered by the user is the same as
the current tree name, an error message is printed
and 'NORMXFRM' remains in prompt mode. If the tree
name entered already exists, but is not the same as
the current tree name, the user is asked if s(he)
wants to destroy the existing tree. If the user
types 'Y' (for yes), 'NORMXFRM' creates a new tree
with the user-specified name. If the user types 'N'
(for no), 'NORMXFRM' asks for another tree name.

248



NORMXFRM (continued)

Saved Matrix Name -
If the user wants to save the transformation matrix,
and there is no available space in the Saved Matrix
(SM) File, a message is printed and NORMXFRM exits.
(NOTE: Although the normalization procedure was
successful, the user will be unable to save the
vector used in this transformation. Try again later
after deleting some saved matrices from the SM
File.) The matrix name entered cannot exceed 8
characters of which the first must be alphabetic
and the remainder alphanumeric. The matrix name
must also be unique within the SM file. The user
is prompted until a valid and unique matrix name
is entered.

Session with LONG .-ompts

The following example assumes the name of the current
data tree is 'NASA'

TYPE IN NAME TO GIVE TO THE OLPARS DATA TREE
THAT WILL BE CREATED AS A RESULT OF THE TRANSFORMATION
(8 CHARS. MAX.) - /NASA/
NEW TREE NAME MUST BE DIFFERENT
FROM CURRENT DATA SET TREE NAME
TYPE IN NAME TO GIVE TO THE OLPARS DATA TREE
THAT WILL BE CREATED AS A RESULT OF THE TRANSFORMATION
'8 CHARS. MAX.) - /NEWNASA/
TRANSFORMATION COMPLETE
DO YOU WISH TO SAVE THE TRANSFORMATION MATRIX (Y/N)? /Y/
TYPE IN THE NAME OF THE MATRIX TO BE SAVED - /1MATRIX/

ERROR IN MATRIX NAME. THE FIRST CHARACTER MUST
BE ALPHABETIC, AND THE REST ALPHANUMERIC.

TYPE IN THE NAME OF THE MATRIX TO BE SAVED - /MATRIX1/

249

,'eI __



NRSTNBR

COMMAND NAME: NRSTNBR

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

NRSTNBR creates nearest neighbor logic at a specified
node of the current logic tree. The resultant logic
consists of a reference pattern tree created by using

1) the entire current data tree,
2) mean vectors (from the current data tree)

of the classes present at the logic node, or
3) the "Condensed Nearest Neighbor" rule of H~art.*

No partial evaluation is performed for this logic.
Partial evaluations are not needed for the CNN rule, or
when using the entire data tree, because classification
is defined to be 100 percent for the design data classes
present at the logic node.

(When using the mean vector rule, logic evaluation
should give results similar to Nearest Mean Vector
(NMV) logic with the Euclidean distance measure.)

For the CNN rule, statistics are presented to the user
(e.g., number of passes, number of vectors from classes
present at the logic node, and number of reference
patterns selected).

*See HART, P. E., "The Condensed Nearest Neighbor Rule,"
IEEE Trans. Info. Th.,vol. IT 1L4, pp. 515-516, May 1968

USER INTERACTION:

o Select logic node (if more than one incomplete
logic node exists in the logic tree).

o Select reference pattern tree generation rule.

o Name reference pattern tree (if rule dictates
creation of new tree)

" If CNN rule is chosen:
00 Select interaction at each iteration of rule.
00 Abort generation of NN logic

o Select measurements to be ignored during evaluation

250



NRSTNBR (continued)

EXAMPLE(S):

In the following example, nearest neighbor logic is
being created at the senior node of the logic tree.
Since there is only one node in the logic tree, the
user is not asked to select a logic node. A decision
was made to use the entire current data tree as the
nearest neighbor reference pattern tree. Consequently,
there is no prompt for the user to specify a reference
pattern tree name. All measurements are to be used
during any subsequent logic evaluation.

Session with SHORT prompts

REFERENCE PATTERN SELECTION

1. ENTIRE DATA TREE
2. MEAN VECTORS
3. CNN RULE

(1-3)? /l/
IGNORE MEASUREMENTS (Y/N)? /N/

(PROMPT NOTES:

If the reference pattern selection rule was either 2
or 3, a new 'data' tree would have been created to
contain the reference pattern vectors (a tree name
prompt would have appeared; If the name given
already existed, the user is queried for permission
to destroy the tree).

Note, when not using the 'entire data tree' rule, the
resultant reference pattern tree will only contain
vectors from the classes present at the logic node.
If the entire data tree is used, all the classes in
the current data tree will be in the reference
pattern tree. Thus, there may be more reference
pattern classes than classes present at the logic
node. The only problem this may cause during
subsequpnt logic evaluation is slower execution time.

If the condensed nearest neighbor rule is chosen, the
ability to review each 'pass' of reference pattern
generation is allowed. After each pass, a prompt
appears, asking if logic creation should be
completed. Note, if no new reference pattern vectors
are chosen from the design data tree, no 'review'
prompt is given because the logic is finished.

251



NRSTNBR (continued)

In the next example the condensed nearest neighbor
rule was picked to generate the reference pattern
tree, 'NNREFPAT'. Since 'NNREFPAT' was in existence,
permission to over write the older version of the
tree was granted. Because this was the first time
nearest neighbor logic was being used on the
particular data set, it was not clear that the CNN
rule would create a 'good' reference pattern tree.
Therefore, interaction with each CNN rule 'pass'
was requested. The first measurement was not useful
in separating the data classes, so it was ignored.

Session with LONG prompts

REFERENCE PATTERNS ARE TO BE GENERATED FROM ...

1. THE ENTIRE DESIGN DATA TREE
2. THE MEAN VECTORS OF THE DESIGN DATA SET
3. THE CONDENSED NEAREST NEIGHBOR RULE

(1-3)? /3/
TYPE IN NAME TO GIVE TO REFERENCE PATTERN TREE -

/NNREFPAT/

THE NAME 'NNREFPAT' IS IN USE IN YOUR DIRECTORY;
DO YOU WANT TO DESTROY THE DATA SET WITH THAT NAME
(Y/N)? /Y/

DO YOU WANT THE ABILITY TO ABORT THE CONDENSED
NEAREST NEIGHBOR RULE AFTER EACH ITERATION (Y/N)? /Y/

DO YOU WISH TO HAVE SOME MEASUREMENTS IGNORED (Y/N)? /Y/
ENTER THE MEASUREMENT NUMBER (END WITH 0) - /l/
ENTER THE MEASUREMENT NUMBER (END WITH 0) - /0/

(erase screen)

12 VECTORS IN CLASSES PRESENT. - ANSWER (Y/N) TO 'OK?'

PASS 1 (3 NEW REFERENCE PATTERNS, TOTAL OF 3) - OK? /Y/
PASS 2 (0 NEW REFERENCE PATTERNS, TOTAL OF 3)

252

iA



OPTIMLMOD

COMMAND NAME: OPTIMLMOD

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

OPTIMLMOD is used to modify logic at a user chosen
pairwise logic node. In this case OPTIMLMOD creates (or
changes existing) optimal discriminate plane logic at the
node. The Fisher direction is combined with a computed
optimal orthogonal direction to create an optimal
discriminating plane. The vectors are projected onto
this plane and the user is asked to enter a boundary,
which will be used to discriminate between classes in an
evaluation. The vote is for one class or the other,
i. e., there is no excess region. The only way a vector
can be rejected is if it fails to acquire the minimum
vote count.

This command can only be used after FISHER has created

pairwise logic in the current logic tree.

To evaluate the logic, use PWEVAL.

USER INTERACTION:

The user is asked (1) which pairwise logic node should be
modified, (2) which class pair should be modified,
(3) for a boundary, (4) for the symbol of the class
associated with the convex region.

EXAMPLE(S):

(In the examples which follow please note the meaning of
two symbols:

... means 'position the graphics cursor'
K means 'any alphanumeric key

except IQ''

The current entry mode (BOUNDARY, CONVEX PT., CONVEX
SYMBOL) is shown to the left of the user input.)

In the following example, the user has decided to
modify pairwise logic node number 3, in particular,
the class pair of 'soy' and 'oats'. When satisfied,
a comma is entered.

253

lot_ _ 11



OPTIMLMOD (continued)

Session with SHORT prompts

LOGIC NODES WITH PAIRWISE LOGIC

23
NODE NUMBER? /3/

(The screen is erased.)

CLASS SELECT LIST

soy oats weat corn

ENTER 2 CLASS DISPLAY SYMBOLS
-OR- 1*' FOR NEXT CLASS PAIR
-OR- '' TO EXIT WITH MODIFICATIONS SAVED

CLASS SYMBOLS: /cs/

(The projected vectors are displayed.)

BOUNDARY: /.. .K...K...K... KQ/
CONVX PT: /...K/
CONVEX SYMBOL? /c/

To create a boundary consisting of only one line
segment:

BOUNDARY: /...K...KQ/
CONVX PT: /...K/
CONVEX SYMBOL? /c/

(The screen is erased.)

CLASS SELECT LIST

soy oats weat corn

ENTER 2 CLASS DISPLAY SYMBOLS
-OR- "'* FOR NEXT CLASS PAIR
-OR- ' ' TO EXIT WITH MODIFICATIONS SAVED

CLASS SYMBOLS: /,/

(The program puts up the menu)

254



OPTIMLMOD (continued)

(PROMPT NOTES)*

When exiting from the class pair select prompt, a
is different from a <CR>. The ',' will save the changes
and cause the option to be changed to OPTIMLMOD. A <CR>
is interpreted as the standard OLPARS exit. Note: A
'comma exit' will always change the current option, even
if no modification has been made.

The convex symbol requested is the display symbol of
the class located in the user declared convex region.

The next class pair symbol will cause OPTIMLMOD to set
the pair index to the follot*.ng pair in this series...

(1,2), (1,3), (1,4), ... (1,TruCls), (2,3), (2,4), etc.

If the pointer is at the end of the list, the next pair
is the first pair (1,2).

In this example, the user decides to modify the next
class pair of logic node 3.

Due to the limitation of visible space on the display
screen there is no interactive 'SHORT' and 'LONG'
prompts for the boundary input (i.e., the OLPARS program
help function is not available during graphics input).

Session with LONG prompts

LOGIC NODES WITH PAIRWISE LOGIC

23
ENTER THE LOGIC NODE YOU WISH TO MODIFY - /3/

(The screen is erased.)

CLASS SELECT LIST

soy oats weat corn

ENTER 2 CLASS DISPLAY SYMBOLS
-OR- '*' FOR NEXT CLASS PAIR
-OR- ',' TO EXIT WITH MODIFICATIONS SAVED

CLASS SYMBOLS: I'/

(The projected vectors are displayed and the user enters
a boundary and a convex point - see short prompt.)

255



OPTIMLMOD (continued)

ENTER THE CLASS SYMBOL
ASSOCIATED WITH THE CONVEX REGION - /c/

(The screen is erased.)

CLASS SELECT LIST

soy oats weat corn

ENTER 2 CLASS DISPLAY SYMBOLS
-OR- '*' FOR NEXT CLASS PAIR
-OR- ',' TO EXIT WITH MODIFICATIONS SAVED

CLASS SYMBOLS: /,1

(The program puts up the menu)

256

" I __. .x . . ....



PROJMN

COMMAND NAME: PROJMN

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

After a one-space or two-space display is created,
PROJMN displays the mean vectors for the classes
displayed superimposed on the screen. A rectangle
is drawn around the projection of each mean vector.

USER INTERACTION: NONE

(NOTES:

If the display code in the DI file is not cluster or
scatter, or macro or micro, the message 'THE DISPLAY
FILE DOES NOT CONTAIN A ONE- OR TWO-SPACE DISPLAY'
is printed at the user's terminal.

257



PRTCM

COMMAND NAME: PRTCM

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

PRTCM produces a printout of a confusion matrix stored

in the display information file.

USER INTERACTION:

NONE

258



PR TDS

CCMMAND NAME: PRTDS

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

PRTDS consists of eight printout options which allow the
user to obtain certain basic statistical information about
a data set. There are two additional choices available
which allow the user to choose the output format and the
size of the data set to be processed. When all user
prompts are finished, PRTDS will send the output to the
system line printer.

Note, PRTDS can be used in excess measurement mode.

USER INTERACTION:

The user is first prompted for a data tree name for which
the information will be gathered. The user then selects4
one or more data output options. The options are entered
by number, in any order, with no separators between them.
Once the options have been entered and are all valid, an
output format prompt will appear. Exponential format may
be used any time the user prefers to have values printed in
scientific notation. This option should be used when the
values being printed are "too large" (magnitude greater
than 1O**9) or "too small" (magnitude less than 1O**(-1)).
Using exponential format, greater accuracy can be seen for
values that are "too small". However, the regular format
(floating point) is usually easier to read. If the user
does not want to use the entire data set, a subset of theI
data set may be selected.

The effects of the options are as follows:

Option 1: ALL VECTORS
All vectors of the selected data classes are printed.
The format of this printout simplifies comparison of the
different values of a specific measurement or feature.
The tree must contain at least one lowest node for this
option to execute.

259



PRTDS (continued)

Option 2: SINGLE VECTOR
The program will ask for a class name, then for the
vector ID number of the vector to be printed. The
program then asks if more single vectors are to be
selected from this class. If you wish to switch
classes, a zero (0) is entered, and the class name
prompt will appear again. The standard OLPARS escape
(<CR>), entered to any of the prompts in this option
will end execution of just this option. This option
only works for lowest nodes.

Option 3: RANGES AND OVERLAP
This option prints a table, for each data class in the
selected data set, containing the minimum, maximum, and
range values for each measurement. When tables for all
selected classes have been completed, a table containing
the overall minimum, maximum, and range values is
printed. Following the tables, an overlap graph is
printed containing a line for each class along each
measurement. The numeric range for each class will
accompany the graph. If just one class has been
selected, the overall ranges and overlap graph will not
be printed. This option only works for lowest nodes.

Option 4: MEANS AND STANDARD DEVIATIONS
The mean vectors and standard deviations for all data
nodes in the selected data set are printed.

Option 5: DIFFERENCE BETWEEN MEAN VECTORS
The absolute values of the difference between each
measurement of the mean vectors are printed, along with
the Euclidean distance between each pair of mean vectors
in the selected data set. This option will not execute
if the data set is in excess measurement mode.

Option 6: COVARIANCE MATRICES
The covariance matrix for all data nodes in the selected
data set is printed. This option will not execute if
the data set is in excess measurement mode.

260



PRTDS (continued)

Option 7: CORRELATION MATRICES
The correlation matrix for all data nodes in the
selected data set is printed. This option will not
execute if the data set is in excess measurement mode.

Note:
Coy (i,j)

Cor(i,j)
sqrt (Var(i) * Var (j))

where, Cor(i,j) = correlation matrix being
calculated

Cov(i,j) = covariance matrix of
measurements i and j

Var(i) = variance of measurement i

Var(j) = variance of measurement j

Option 8: TREE STRUCTURE
The tree structure of the selected data set is printed
in outline form including the dimension of the data set,
the number of vectors at each node, the number of nodes
in the tree, and the number of lowest nodes in the tree.

EXAMPLE(S):

In the following example(s), nasal is a data tree,
with whea, rye, soys, and Cloy all data classes
under the senior node.

Session with SHORT prompts

TREENAME? /NASAl/

1. ALL VECTORS
2. SINGLE VECTOR
3. RANGES AND OVERLAP
4. MEANS AND STANDARD DEVIATIONS
5. DIFFERENCE BETWEEN MEAN VECTORS
6. COVARIANCE MATRICES
7. CORRELATION MATRICES
8. TREE STRUCTURE

OPTIONS DESIRED - /138/
EXPONENTIAL FORMAT (Y/N)? IN-
PRINT ENTIRE DATA SET (Y/N)? /Y/

261

L2~d___ ____ ___ ____ ___ ____ ___ ____ ___



PRTDS (continued)

(PROMPT NOTES: *****************

If option 2, or option 8 are selected individually,
the 'PRINT ENTIRE DATA SET' prompt will not occur.
The 'EXPONENTIAL FORMAT prompt will also not occur
if option 8 is selected by itself.

Session with LONG prompts

ENTER THE NAME OF THE DATA SET FOR WHICH
YOU WANT STATISTICAL INFORMATION (8 CHARS. MAX)-
/NASA1/

1. ALL VECTORS
2. SINGLE VECTOR
3. RANGES AND OVERLAP
4.* MEANS AND STANDARD DEVIATIONS
5. DIFFERENCE BETWEEN MEAN VECTORS
6. COVARIANCE MATRICES
7. CORRELATION MATRICES
8. TREE STRUCTURE

ENTER THE OPTIONS TO BE PRINTED OUT.
ENTER BY NUMBER, WITH NO SEPARATORS. (E.G. 157) -/2/
DEFAULT OUTPUT FORMAT IS INI FLOATING POINT NOTATION.
WOULD YOU LIKE THE PRINTOUT TO BE IN SCIENTIFIC
NOTATION (Y/N)? INI
ENTER THE CLASS NAME OF THE VECTOR(S)
TO BE PRINTED - /alfa/

TYPE ZERO (0) TO ENTER ANOTHER CLASS
ENTER THE VECTOR ID NUMBER OF THE VECTOR
TO BE PRINTED OUT - /82/
ENTER THE VECTOR ID NUMBER OF THE VECTOR
TO BE PRINTED OUT - /C>

262



PRTIDX

COMMAND NAME: PRTIDX

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

PRTIDX will identify a class symbol found on the current
two-space display or one space micro plot display. Either
vector identifiers or the number of vectors within a
certain area will be displayed to the user.

The PRTIDX output obtained from a:

1. One space MICRO plot contains the number of
vectors, along with the percentage of vector6
from each class found in the user requested bin.

2. Two space SCATTER plot contains the identifiers
of the vectors found within the user specified
region.

3. Two space CLUSTER plot contains the identifiers
of the vectors (only upon special request) and
a count of the number of vectors found in a
single cluster grid location.

USER INTERACTION:

The user is asked:

1. If the output is to be placed in a file or
displa~ed at the ttrminal.

2. If output is sent to a file, the user is asked for
a file name and whether or not the file is to be
printed at a line printer.

3. for vectors to be identified or counted.

EXAMPLE(S):

Session with SHORT prompts

TERMINAL OR FILE (T/F)? /F/

FILENAME? /GRAINIDX/

PRINT FILE (Y/N)? /Y/

263

Af Al:



PRTIDX (continued)

At this point the current OLPARS display is redisplayed.
The following prompt depends upon the type of current
display present. In each case, however, the prompt will
appear to flash at the user's terminal in the lower left
hand portion of the screen. After the prompt is
displayed, the graphics cursor will appear for the user
to position over the areas to be examined. The following
usage of '..'represents user movement of the graphics
cursor.

MICRO PLOT - a flashing 'PICK BIN:' /..B/

SCATTER PLOT - a flashing 'PICK
VECTORS:' /.L .... U/

CLUSTER PLOT - a flashing 'PICK GRID
POSITION:' /..I/

(PROMPT NOTES:

In the previous example, if the user had specified
IT' for the 'TERMINAL OF FILE (TIE)?' prompt, the
'file name' and 'print file' prompts would not have
appeared. Note also, if the user terminal is the
designated output unit, 1) the OLPARS display is
erased and redisplayed after each indivi4*dual user
lid' request, and 2) PRTIDX queries the user for
continuation of the program (CONTINUE (YIN)?) after
each dump of vector ids. (scatter plot indexing has
a multiple page facility and uses a 'MORE (Y/N)?'
prompt along with the 'continue' prompt).

To exit the program while a graphics cursor is
present, the user should type IQ', for quit.

With a MICRO PLOT display, the user moves the cursor
to the bin from which information is desired and
enters a space or letter.

With a SCATTER PLOT display, the user is going to
request a rectangular region from which to obtain
vector identifiers. The user region is defined by two
points which represent opposite corners of a
rectangle. The user moves the graphics cursor to a
point representing one corner of the rectangle and
enters a space or letter. Then the user moves the
graphics cursor to a point representing the opposite
corner and again enters a space or letter. PRTIDX
will draw a rectangle using the given points and ask
the user if the boundary is acceptable. If the user
answers 'No', the graphics cursor will appear again

264



PRTIDX 'continued)

for the user to re-establish the 'indexing' region.
In the given example, the letter 'L' meant lower left
corner while 'U' meant upper right corner.

With a CLUSTER PLOT display, the user moves the
graphics cursor to the center of the character
present in a given grid position and enters a letter
cr space. If 'I' was the letter entered, then the
vector identifiers will appear in the output with the
number of vectors from each class found in the given
grid position. Otherwise, only the number of vectors
from each class will appear in the output.

Session with LONG prompts

DO YOU WANT THE OUTPUT TO APPEAR AT THE TERMINAL

OR IN A FILE (T/F)? /F/

TYPE IN NAmF OF FILE TO BE USED - /GRAINS/

DO YCU WANT FILE PRINTED UPON PROGRAM
COMPLETION (Y/N)? /N/

From this point, the remaining prompts appear in the
same manner as shown in the SHORT prompt section.

265

IAI



PRTLOG

COMMAND NAME: PRTLOG

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

PRTLOG gives the user a printer listing of information
for any OLPARS logic tree. When all user prompts are
finished, PRTLOG will send the output to the system
line printer.

USER INTERACTION:

The user is asked for the name of the logic tree
to be printed and if (s)he wants statistics to be
printed in exponential format.

EXAMPLE(S):

Session with SHORT prompts

LOGIC TREE NAME? /TESTLOG/

EXPONENTIAL FORMAT (Y/N)? /N/

(example of an output listing)

LOGIC TREE NAME IS TESTLOG
DESIGN DATA SET NAME IS TEST (****)
NUMBER OF DIMENSIONS = 4
TOTAL NUMBER OF NODES IN THE LOGIC TREE 6
NUMBER OF DATA CLASS NODES = 4
NUMBER OF INCOMPLETE LOGIC NODES = 0

LOGIC NODE LOGIC CREATION COMMAND (CLASS(ES) PRESENT)
I NMV(ADCS)
6 ****
5 ...... ABC
4 ...... DEFG
3 ...... CAT
2 ...... SAND

At this point statistics are printed for each logic
node. Output varies depending on the type of logic
at the node:

266



PRTLOG (continued)

PAIRWISE LOGIC

MINIMUM VOTE COUNT.
for each class pair:

LOGIC TYPE.
OPTION CREATING THE LOGIC.

if logic type is FISHER:
FISHER COEFFICIENTS.
DISCRIMINANT COEFFICIENTS.
THRESHOLDS AVAILABLE.
NUMBER OF THRESHOLDS USED AND WHICH ARE USED (1-5).
CLASS ON NUMERICALLY GREATER SIDE OF MIDDLE
THRESHOLD.

if logic type is OPTIMAL DISCRIMINANT PLANE:
NUMBER OF LINE SEGMENTS IN THE BOUNDARY.
DISCRIMINANT COEFFICIENT OF EACH LINE SEGMENT.
THRESHOLD FOR EACH LINE SEGMENT.
CLASS ON CONVEX SIDE OF THE BOUNDARY.
CLASS IN EXCESS REGION.

GROUP LOGIC

LOGIC TYPE FOR GROUP (one-space, two-space,
or Boolean).

OPTION CREAT;NG THE LOGIC.

for one-space~logic:
DISCRIMINANT COEFFICIENTS OF PROJECTION VECTOR.
THRESHOLD(S).

for two-space logic:
NUMBER OF LINE SEGMENTS IN BOUNDARY(IES).
DISCRIMINANT COEFFICIENTS FOR EACH LINE SEGMENT.
THRESHOLD FOR EACH LINE SEGMENT.

LOGIC NODE NUMBERS ASSOCIATED WITH EACh REGION.

267

I I I I I I I II I i im.. . . . .,



PRTLOG (continued)

NEAREST MEAN VECTOR LOGIC

OPTION CREATING THE LOGIC.
TYPE OF WEIGHTING (OR QUADRATIC CLASSIFIER).
MEASUREMENTS IGNORED.
REJECT BOUNDARY DISTANCE VALUES.
for each class at the logic node:

MEAN VECTOR.
WEIGHTING VECTOR.
WEIGHTING MATRIX.
DETERMINANT OF THE COVARIANCE MATRIX FOR THE CLASS.
LOGIC NODE NUMBER ASSOCIATED WITH THE CLASS.

NEAREST NEIGHBOR LOGIC

OPTION CREATING THE LOGIC.
NUMBER OF NEAREST NEIGHBORS EXAMINED.
MEASUREMENTS IGNORED.
TREE NAME OF THE REFERENCE PATTERNS.
LOGIC NODE NUMBERS ASSOCIATED WITH EACH CLASS AT THE
NODE.

(PROMPT NOTES:

A 'Y' (yes) response to the prompt 'EXPONENTIAL FORMAT
(YIN)?' causes statistics to be printed in scientific
notation. Any other response causes statistics to be
printed in floating point format. Exponential format
should be used when the values being printed are
"too large" (magnitude greater than 1O**9) or
"too small" (magnitude less than 1O**(-l)). Using
exponential format, greater accuracy can be seen for
values that are "too small". However, floating point
notation is usually easier to read.

Session with LONG prompts

ENTER THE NAME OF THE LOGIC TREE TO BE PRINTED
('I' REPRESENTS THE CURRENT LOGIC) - /TESTLOG/
DEFAULT OUTPUT FORMAT IS IN FLOATING POINT NOTATION.
WOULD YOU LIKE THE PRINTOUT TO BE IN SCIENTIFIC
NOTATION (Y/N)? IN!

(output is same as in short prompt notes.)

268



PWEVAL

COMMAND NAME: PWEVAL

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

PWEVAL evaluates pairwise logic at a user chosen
logic node. (See FISHER for additional information).

This command can only be used after FISHER has created
logic in the curient logic tree, or FISHMOD, THRESHMOD,
or OPTIMLMOD has modified existing pairwise logic.

NOTE, If this command is used twice at the same logic
node, without deleting the existing logic, a confusion
matrix of zeroes will be created.

USER INTERACTION:

The user is asked which pairwise logic node should be
evaluated.

EXAMPLE(S):

In the following example, the user has decided to
evaluate vectors at pairwise logic node number 3.

Session with SHORT prompts

LOGIC NODES WITH PAIRWISE LOGIC

23
NODE NUMBER? /3/

(Confusion matrix is displayed.)
(The program puts up the menu)

In this example the user decides to evaluate vectors

at logic node 3.

Session with LONG prompts

LOGIC NODES WITH PAIRWISE LOGIC

23
ENTER THE LOGIC NODE YOU WISH TO EVALUATE - /3/

(Confusion matrix is displayed.)
(The program puts up the menu)

269



RANK

COMMAND NAME: RANK

CATEGORY: MEASUREMENT EVALUATION COMMAND (subsidiary'

FUNCTIONAL DESCRIPTION:

BANK displays the type of measurement evaluation ranking
specified by the user. -In an 'overall' ranking, the
discriminant measurements displayed are those values which
separate all classes on the basis of each measurement. An
overall ranking also shows the class that is best separated
from all other classes ("best class") by each measurement,
and the two classes that are best separated from each other
("best class pair") by each measurement. In a 'measurement
by class' ranking, the discriminant measurements displayed
are those values which separate the user-specified class
from all other classes. In a 'measurement by class pair'
ranking, the discriminant measurements displayed are those
values which separate the first user-specified class from
the second user-specified class. In the three types of
rankings described above, the measurement numbers which
correspond to either the smallest or largest discriminant
values are the best measurements for the type of separation
being performed.

In a 'class by measurement' ranking, the user specifies a
measurement number which is used as an index into each
discriminant measurement vector whose values separate one
class from all other classes (ex. class i separated from
all other classes). There are as many vectors as there are
classes. The discriminant measurement values whi )
correspond to the user-specified measurement are ranked,
and the results show which classes are best separated from
all other classes using the user-specified measurement.

In a 'class pair by measurement' ranking, the user
specifies a measurement number which is used as an index
into each discriminant measurement vector whose values
separate one class from another class (ex. class i
separated from class j). There are as many discriminant
measurement vectors as there are combinations (in twos) of
classes ("class pairs"). (NOTE: A separation between
class i and class j is the same as a separation between
class j and class i (the order of class symbols within a
class pair is insignificant), and thus constitutes one
combination (class pair). Also, a class is never evaluated
to be separated from itself, that is, class i separated
from class i is never a class pair). The discriminant
measurement values which correspond to the user-specified
measurement are ranked and the results show which two
classes are best separated from each other using the

270



RANK (continued)

user-specified measurement.

For each type of ranking, all discriminant measurement
values are ranked in ascending (PROBCONF) or descending
(DSCRMEAS) order, depending on the 'CURRENT OPTION' (most
recently executed Major Measurement Evaluation Command).
Therefore, those values at the top of the list are the best
values for the type of ranking being performed.

Note, RANK can be used in excess measurement mode.

USER INTERACTION:

The user is asked to select one of the following
types of rankings:

(1) overall
(2) measurement by class
(3) measurement by class pair
(4k) class by measurement
(5) class pair by measurement

If the user selects a 'measurement by class' ranking, s(he)
is asked to enter the class symbol which represents the
class for which measurements will be ranked. If the user
selects a 'measurement by class pair' ranking, s(he) is
asked to enter two class symbols representing the pair of
classes for which measurements will be ranked. If the user
selects a 'class by measurement' or a 'class pair by
measurement' ranking, s(he) is asked for the measurement
number for which classes or class pairs will be ranked.

271



RANK (continued)

EXAMPLE(S):

Session with SHORT prompts

In the following example the user has chosen to rank
measurements by class pair s/C

RANKING OPTIONS:
(1) OVERALL
(2) MEAS. BY CLASS
(3) MEAS. BY CLASS PAIR
(4) CLASS BY MEAS.
(5) CLASS PAIR BY MEAS.
TYPE OF RANKING = /3/
FIRST CLASS SYMBOL: Is!
SECOND CLASS SYMBOL: /C/

RANKING OPTIONS:
(1) OVERALL
(2) MEAS. BY CLASS
(3) MEAS. BY CLASS PAIR
(4) CLASS BY MEAS.
(5) CLASS PAIR BY MEAS.
TYPE OF RANKING = /<CR>/

(PROMPT NOTES: **** *************************

RANK remains in prompt mode until the user selects a
valid option number and when applicable a valid
class symbol or a valid measurement number, or until
the OLPARS character for exiting commands is typed.
In the case of a 'measurement by class pair' ranking,
the second class symbol typed must be different from
the first class symbol typed.

I.
272

,l e --- . , ,-



RANK (cc inued)

Session with LONG prompts

In the following example, the user has chosen to rank
all class pairs on the basis of measurement 4.

RANKING OPTIONS:
(1) OVERALL
(2) MEASUREMENT BY CLASS
(3) MEASUREMENT BY CLASS PAIR
(4) CLASS BY MEASUREMENT
(5) CLASS PAIR BY MEASUREMENT
TYPE IN THE NUMBER (1 THRU 5)
THAT CORRESPONDS TO THE TYPE OF RANKING DESIRED: /5/
TYPE IN THE MEASUREMENT NUMBER TO BE USED
MEAS NO. = /4/

RANKING OPTIONS:
(1) OVERALL
(2) MEASUREMENT BY CLASS
(3) MEASUREMENT BY CLASS PAIR
(4) CLASS BY MEASUREMENT
(5) CLASS PAIR BY MEASUREMENT
TYPE IN THE NUMBER (1 THRU 5)
THAT CORRESPONDS TO THE TYPE OF RANKING DESIRED: /<CR>/

273



RDISPLAY

COMMAND NAME: RDISPLAY

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

RDISPLAY will redisplay the previous one or two space
data projection or the previous confusion matrix at the
user's terminal.

USER INTERACTION:

NONE

274

4



REASNAME

COMMAND NAME: REASNAME

CATEGORY: UTILITY COMMAND

FUNCI NAL DESCRIPTION:

Logic Design Commands initialize the reassociated class
names in a logic tree to be the same as the original design
data set class names. REASNAME gives the user the ability
to change these reassociated class names to whatever is
desired. It is useful to change the reassociated class
names in cases where a test data set is to be evaluated
against logic designed on a data set whose class names are
different from the test data set. In such a case, the
reassociated class names in the current logic should be
changed to be the same as the class names in the test data
set, and the user should use the reassociated class names
during overall logic evaluation.

REASNAME displays, for the current logic, a table of
completed logic nodes, along with the original design data
set class names and the reasssociated class names. In
order to use REASNAME, the current logic must be complete.

USER INTERACTION:

The user is prompted for a logic node number and a new
reassociated class name until (s)he is satisfied with the
changes made.

EXAMPLE (S):

Session with SHORT prompts

In the following example, the user changes the reassociated
class names for all of the logic nodes. When the table is
redisplayed, (s)he discovers that (s)he has made a spelling
error ('oots' should be 'oats'). (S)He responds with a 'Y'
(yes) to the 'MORE CHANGES (Y/N)? ' prompt and corrects
the error. (S)He is then satisfied with the results and
responds with a 'N' (no) to the 'MORE CHANGES (Y/N)? I

prom pt.

275



REASNAME (continued)

DESIGN DATA SET REASSOCIATED
LOGIC NODE CLASS NAME CLASS NAME

5 anod anod
6 bnod bnod

8 cnod cnod
9 dnod dnod

LOGIC NODE AND CLASS NAME: /5 oots/
LOGIC NODE AND CLASS NAME: /6 weat/
LOGIC NODE AND CLASS NAME: /8 soys/
LOGIC NODE AND CLASS NAME: /9 alfa/
LOGIC NODE AND CLASS NAME: /0/

DESIGN DATA SET REASSOCIATED
LOGIC NODE CLASS NAME CLASS NAME j

5 anod oots
6 bnod weat
8 enod soys
9 dnod alfa

MORE CHANGES (Y/N)? /Y/
LOGIC NODE AND CLASS NAME: /5 oats/
LOGIC NODE AND CLASS NAME: /O/

DESIGN DATA SET REASSOCIATED
LOGIC NODE CLASS NAME CLASS NAME

5 anod oats
6 bnod weat
8 cnod soys
9 dnod alfa

MORE CHANGES (Y/N)? /N/

(PROMPT NOTES: ************************

If the current logic is incomplete, REASNAME notifies
the user and exits. If the user is running OLPARS in
long prompt mode, (s)he is given some instructions
and asked if (s)he wants to continue. If the user
wants to continue, or if (s)he is running OLPARS in
short prompt mode, the table of logic nodes is
displayed. Pages of the logic node table are
displayed until the entire table has been shown, or
until the user does not respond with 'Y' (yes) to the
'NEXT PAGE OF LOGIC NODES (Y/N)? ' prompt. Next, for
each logic node in the table whose reassociated name

276

it 
j



REAS14AME (continued)

is to be changed, the user is asked to enter the
logic node number and the new reassociated class
name. The user is notified if a logic node number
is invalid, and prompting continues. If at any time
the user types zero (0) for the logic node number,
the table of logic nodes is redisplayed, with
modifications, and the user is asked if (s)he wants
to make any more changes. Prompting for a logic node
number and class name will continue until the user
exits via the OLPARS program exit convention or until
a response indicates (s) he is satisfied.

Session with LONG prompts

A TABLE OF LOGIC NODE NUMBERS, DESIGN DATA SET CLASS
NAMES, AND REASSOCIATED CLASS NAMES WILL BE DISPLAYED.
YOU MAY CHANGE THE REASSOCIATED CLASS NAME OF ANY
LOGIC NODE IN THE TABLE BY TYPING THE LOGIC NODE
NUMBER AND THE NEW REASSOCIATED CLASS NAME ON ONE
LINE. IF AT ANY TIME YOU WISH TO HAVE THE TABLE
REDISPLAYED, TYPE IN A ZERO (0) IN RESPONSE TO THE
'LOGIC NODE NUMBER AND REASSOCIATED CLASS NAME' PROMFT.

DO YOU WISH TO CONTINUE (YIN)? /Y/

(The table would appJcr here as in the above example).

LOGIC NODE NUMBER AND REASSOCIATED CLASS NAME: /5 oats/
LOGIC NODE NUMBER AND REASSOCIATED CLASS NAME: /6 weat/
LOGIC NODE NUMBER AND REASSOCIATED CLASS NAME: /8 soys/
LOGIC NODE NUMBER AND REASSOCIATED CLASS NAME: /9 alfa/
LOGIC NODE NUMBER AND REASSOCIATED CLASS NAME: /0/

(The table would be redisplayed here with modifications
* as in the above example).

DO YOU WISH TO CHANGE MORE REASSOCIATED CLASS NAMES
(Y/N)? /N/

277



REDRAW

COMMAND NAME: REDRAW

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

REDRAW is used to draw an existing one or two-space
decison boundary on an OLPARS display.

USER INTERACTION: NONE

(NOTES:

A message is printed at the terminal if the
projection is not a one or two-space display.
The program will then exit with no action taken.

(If a data partition (boundary) has been drawn on a
one or two space display and a new display of the
same data projection appears on the screen at some
later time, rhe boundary does not automatically
reappear.)

On a two-space projection, REDRAW will extend the
line segments to the edge of the display window.

REDRAW also reconstructs boundaries drawn on the
original projection onto "zoomed" projections and
vice versa.

Two-space boundzaries are labeled in order of
creation (1+' tor first boundary drawn, 'X' for
second boundary drawn).

278

Lr.



AD-ADIA8 733 PAR TECHNOLOGY CORP NEW HARTFOP NY PF/ 9/
ON-LINE PATTERN ANALYSI S AND RECOGNITION SYSTEM. OLPARS Vt. USE -ETC(U)
JUN A2 S E HAEHN. , MORRIS

UNCLASSIFIED PAR-82-21 NL

*4 mohmhhhhhhu~
sEEEEEEEEEohEE
EEEEooEEEEm EE
mohEEEEEEohEEE

sommommmoEND



REPROJECT

COMMAND NAME: REPROJECT

CATEGORY: UTILITY CCMMAND

FUNCTIONAL DESCRIPTION:

REPROJECT enables a user to project a data set on
different eigenvectors after an EIGEN VALUE or
GENERAL DISCRIMINANT projection command has created a
one-space or two-space display.

USER INTERACTION:

User is asked:

1) if a printer listing of the eigen values is desired.

2) to select one or two eigen values (depending whether
the initial projection was a one space or two space
projection) to use in the projection.

3) if all the vectors of the classes that lie at a logic
node are to be used in subsequent computations, or
only those vectors that lie at the logic node.

(NOTE, the above prompt only appears when the previous
projection was created by a logic design
command.)

EXAMPLE(S):

The following example indicates that the number of
measurements used in eigen value calculations was
three. The previous projection could be created by
SlEIGV, S2EIGV, L1EIGV, L2EIGV, SIGNDV, S2GNDV,
LlGNDV, or L2GNDV. In this example the previous
projection was created by S2EIGV.

Session with SHORT prompts

NUMBER EIGENVALUE

1 1. 751099E+04
2 1.378148E+03
3 3. 736754E+O2

PRINTOUT? Y/N /Y/

EIGENVECTOR NO. FOR THE X PROJECTION: /1/ I
EIGENVECTOR NO. FOR THE Y PROJECTION: /3/

279



REPROJECT (continued)

(PROMPT NOTES: ************** ******** **

Eigenvector Number-

The program will continue to prompt until the user
types in a valid eigenvector number (greater than
zero and less than or equal to the number of
measurements used in the computation).

Printout? -

The program stays in prompt mode until the user
types 'Y' or 'N' as the first character typed. If
the user types 'Y' a lineprinter copy of the above
NUMBER/EIGENVALUE table is procaced.

We obtained two eigen vector projection prompts
because the previous projection was created by a two
space projection command. If a one space projection
command was used, only the X-projection prompt would
appear.

Session with LONG prompts

NUMBER EIGEN VALUE

1 1. 751099E+04
2 1.378148E+03
3 3. 736754E+02

DO YOU WANT A PRINTOUT OF THE EIGENVALUES?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT /N/

ENTER THE EIGENVECTOR NUMBER TO USE FOR THE X PROJECTION:
/I/

ENTER THE EIGENVECTOR NUMBER TO USE FOR THE Y PROJECTION:
/2/

280

I



RESTRUCT

COMMAND NAME: RESTRUCT

CATEGORY: STRUCTURE ANALYSIS COMMAND

FUNCTIONAL DESCRIPTION:

RESTRUCT (restructure data set) uses the boundary(s) on a
one-space or two space plot to divide a class of the
current data set into two or three subclasses. RESTRUCT
presents a list of data classes displayed and asks the user
to select a class to be restructured. RESTRUCT then asks
the user to type in two (for displays with one boundary) or
three (for displays with two boundaries) unique four
character node names. Each node name typed is associated
with a region on the display. The vectors at the node
being restructured are determined to lie in one of the
display regions, and are assigned to the corresponding node
(subclass) in the restructured data tree. (See Appendix B
for an explanation of the display regions and the method of
assigning a vector to a region). RESTRUCT checks to be
sure that the projection being used has been created by a
structure analysis routine.

USER INTERACTION:

The user is asked to:

1) Select one class to be restructured.

2) Rename the 2 or 3 newly created classes,
depending on the number of boundary(s) drawn;
2 classes for one boundary, 3 classes for
two boundaries.

EXAMPLE(S):

The following examples assume that ABCD, EFGH, IJKL, and
MNOP are the lowest nodes in the current data set. In the
example using short prompts, the display is a two-space
projection and two boundaries are drawn. Class EFGH will
be restructured into the new classes 1111, 2222, and
3333. In the example using long prompts, the display is a
one-space projection and one boundary is drawn. Class
IJKL will be restructured into the new classes 'qrst' and
luvwx'.

281

L oll I I I I I I I " ' ' "111 IIII I - .IIil I ,



RESTRUCT (continued)

Session with SHORT prompts

SELECT ONE CLASS TO BE RESTRUCTURED F-ROM THE FOLLOWING

CLASS SELECT LIST

ABCD EFGH IJKL MNOP

CLASS SYMBOLS: /E/

RENAME THE RESTRUCTURED CLASS-
NAME OF FIRST CONVEX REGION? /1111/
NAME OF SECOND CONVEX REGION? /2222/
NAME OF REMAINING REGION? /3333/

(PROM PT NOTES: *eu,** ******i** *ii

Class Symbol-

If the class symbol typed is an invalid class symbol,
i.e. it doesn't exist, RESTRUCT will prompt the user
again for a valid class symbol. If more than one
symbol is typed, the message 'INCORRECT NUMBER OF
CLASSES SELECTED. EXACTLY ONE CLASS MUST BE CHOSEN'
will be printed, and the user will be prompted again.

Display Symbols -

Because the display symbol of the restructured class
will no longer be used in future projections, it may
be used as the display symbol of one of the newly
created classes. All display symbols used in the pro-
jections must be unique, including the newest classes.

When renaming the restructured class, if an illegal
class name is entered, the message 'ILLEGAL NODE NAME
ENTERED' is printed and the user is prompted again.

If the new name is not unique in the data set, the
message 'NON-UNIQUE NODE NAME ENTERED' is printed and
the user is prompted again. If just the display
symbol is not unique, the message 'NON-UNIQUE DISPLAY
SYMBOL ENTERED' is printed and the user is prompted
again.

282



RESTRUCT (continued)

If a new class contains no vectors, the message
'CLASS IS EMPTY' will be printed (where is
the name of the class). If there are two new classes
being created and either class is empty (contains no
vectors) the old class is not restructured. When
there are three new classes being created, at least
two of the new nodes must be non-empty (contain
vectors) in order to restructure the old class.

When a class has successfully been restructured, a
message of the form 'DATA CLASS ---- HAS SUCCESSFULLY
BEEN DIVIDED INTO THE NEW CLASSES .... , .... , AND

will be printed.

Session with LONG prompts

FROM THE LIST OF CLASSES BELOW, TYPE IN THE CLASS SYMBOL

OF ONE CLASS TO BE RESTRUCTURED (I. E. S)

CLASS SELECT LIST

ABCD EFGH IJKL MNOP

TYPE CLASS SYMBOLS ON A SINGLE LINE (E.G. XYZW)
A MINUS SIGN AS THE FIRST CHARACTER INDICATES THAT
EVERYTHING BUT THE SYMBOLS TYPED ARE TO BE SELECTED.

WHEN A '*' IS TYPED, ALL CLASS SYMBOLS WILL BE SELECTED.
WHEN USED WITH A MINUS SIGN, NO CLASS SYMBOLS WILL BE
SELECTED.

CLASS SYMBOLS: /I/

EENAME THE CLASS BEING RESTRUCTURED. TYPE IN THE NEW NODE
NAMES OF EACH REGION RESULTING FROM THE BOUNDARY(S : DRAWN

TYPE IN THE NEW NODE NAME (4 CHARACTERS LONG)
FOR THE LEFT REGION OF THE RESTRUCTURED CLASS
(I. E. XZWV) - /qrst/

TYPE IN THE NEW NODE NAME (4 CHARACTERS LONG)
FOR THE RIGHT REGION OF THE RESTRUCTURED CLASS
(I. E. XZWV) - /uvwx/

283

• ,•, lmn T --- |1|• I I 1



S IC RDV

COMMAND NAME: S1CRDV

CATEGORY: STRUCTURE ANALYSIS COMMAND

FUNCTIONAL DESCRIPTION:

SICRDV allows a user to project the current data set
onto a single coordinate for use in structure analysis.
A one-space display is created at the terminal.

Note, S1CRDV can be used in excess measurement mode.

USER INTERACTION:

The user is asked to select one coordinate
(measurement number) for use in the projection.

EXAMPLE (S):

Session with SHORT prompts

COORDINATE NO.? /12/

INITIALIZING DISPLAY FILE HEADERS

(PROMPT NOTES: ************** *******

Coordinate Number-

The co ?dinate number entered by the user must
be greater than zero and less than or equal to
the vector dimensionality. If an invalid
coordinate number is entered, an errcr message
will occur and the program will continue to
prompt the user for a valid coordinate number.

Session with LONG prompts

ENTER THE MEASUREMENT COORDINATE NUMBER
TO USE FOR THE X PROJECTION - /5/

INITIALIZING DISPLAY FILE HEADERS

284



S1EIGV

COMMAND NAME: SIEIGV

CATEGORY: STRUCTURE ANALYSIS COMMAND

FUNCTIONAL DESCRIPTION:

SIEIGV projects a data set onto an eigenvector for use
in structure analysis. A brief description of the
program algorithm follows:

1) The user is given the option to eliminate any
measurements from the projection.

2) The covariance matrix of the current data set
is used to compute the eigenvalues and eigenvectors.

3) The eigenvalues will be displayed in descending order
at the user's terminal. The user will select one
eigenvalue number. The eigenvector which corresponds
to the eigenvalue number selected by the user will be
used as a projection vector.

4) 2lor each class in the current data set, the
data vectors will be projected onto the projection
vector, i.e.,

X(i) the projection of data vector i onto
the projection vector

5) A macro plot or micro plot will be displayed at the
user's terminal.

USER INTERACTION:

The user is asked:

1) if any measurements are to be eliminated from
the computation of the projection vector

2) if he wants a printout of the eigenvalues

3) to select one eigenvalue for use in the
projection

285

-j



S1EIGV (continued)

EXAMPLE (S ):

The following examples assume a vector
dimensionality equal to 4.

Session with SHORT prompts

INITIALIZING DISPLAY FILE HEADERS

ELIMINATE MEASUREMENTS? Y/N /Y/

MEAS = /2/
MEAS = I<CR>/

NUMBER EIGENVALUE

1 1.751099E+04
2 1. 378148E 03
3 3. 736754E+02

PRINTOUT? Y/N /Y/

EIGENVECTOR NO. FOR THE X PROJECTION: /I/

(PROMPT NOTES: * *** **** ** * ****

Measurement Number-

If the user types a carriage return the first
time this prompt occurs, the program will exit.
The following checks are made on the measurement
number:

1) check for a valid measurement number
(greater than zero and less than or
eqval to the vector dimensionality)

2) check to see that the user does not
type the same measurement number twice

3) check to see that the user does not
eliminate all the measurements

Note: errors from conditions 1 and 2 above cause
the user to remain in prompt mode; an error
from condition 3 causes an error message to
be printed and the program to exit.

286



SIEIGV (continued)

Eigenvector Number-

The program stays in prompt mode until the user
types in a valid eigenvector number (greater than
zero and less than or equal to the number of
measurements used in the computation)

Printout? -

The program stays in prompt mode until the user
types Y or N as the first character typed. If
the user types Y a lineprinter copy of the above
NUMBER/EIGENVALUE table is produced

Session with LONG prompts

INITIALIZING DISPLAY FILE HEADERS

DO YOU WISH TO ELIMINATE MEASUREMENTS FROM THE
CCMPUTATION?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT /Y/

MEASUREMENT NUMBER = /l/
MEASUREMENT NUMBER = /3/
MEASUREMENT NUMBER = /<CR>/

NUMBER EIGENVALUE

1 3. 143891E+04
2 2. 442550E+03

DO YOU WANT A PRINTOUT OF THE EIGENVALUES?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT /N/

ENTER THE EIGENVECTOR NUMBER TO USE FOR THE X PROJECTION:

/2/

287



S2CRDV

COMMAND NAME: S2CRDV

CATEGORY: STRUCTURE ANALYSIS COMMAND

FUNCTIONAL DESCRIPTION:

S2CRDV allows a user to project the current data set
onto two coordinates for use in structure analysis.
A two-space display is created at the terminal.

Note, S2CRDV can be used in excess measurement mode.

USER INTERACTION:

The user is asked to select two coordinates
(measurement numbers) to be used in the projection.

EXAMPLE (S )

Session with SHORT prompts

COORDNATE- O.-FO-THEX-PROECTIO:---

COORDINATE NO. FOR THE Y PROJECTION: /2/

INITIALIZING DISPLAY FILE HEADERS

(PROM PT NOTES:

Coordinate Numbers -

The coordinate numbers entered by the user must
be greater than zero and less than or equal to
the vector dimensionality. If an invalid
coordinate number is entered, an error message
will occur and the program will continue to
prompt the user for a valid coordinate number.

Session with LONG prompts

ENTER THE COORDINATE NUMBER TO USE FOR THE X PROJECTION:
/21/

ENTER THE COORDINATE NUMBER TO USE FOR THE Y PROJECTION:
/5/

INITIALIZING DISPLAY FILE HEADERS

288



S2EIGV

COMMAND NAME: S2EIGV

CATEGORY: STRUCTURE ANALYSIS COMMAND

FUNCTIONAL DESCRIPTION:

S2EIGV projects a data set onto a pair of eigenvectors
for use in structure analysis. A brief description of
the program algorithm follows:

1) The user is given the option to eliminate any
measurements from the projection.

2) The covariance matrix of the current data 3et
is used to compute the eigenvalues and
eigenvectors.

3) The eigenvalues will be displayed at the user's
terminal (in descending order). The user will
select two eigenvalue numbers. The two eigen-
vectors which correspond to the two eigenvalue
numbers selected by the user will be used as
projection vectors.

4) For each class in the current data set, the
data vectors will be projected onto the projection
vector, i.e.,

X(i) = the projection of data vector i onto
projection vector I

Y(i) = the projection of data vector i onto
projection vector 2

5) a scatter plot or a cluster plot will be displayed

at the user's terminal.

USER INTERACTION:

The user is asked:

1) if any measurements are to be eliminated from
the computation of the projection vectors

2) if he wants a printout of the eigenvalues

3) to select two eigenvalues for use in the
projection

289

L'i



S2EIGV (continued)

EXAMPLE(S):

The following examples assume a vector
dimensionality equal to 4.
Session with SHORT prompts

-------------------------

INITIALIZING DISPLAY FILE HEADERS

ELIMINATE MEASUREMENTS? Y/N /Y/

MEAS # = /2/

MEAS # = /<CR>/

NUMBER EIGENVALUE

1 1.751099E+04

2 1.378148E+03

3 3.736754E+02

PRINTOUT? Y/N /Y/

EIGENVECTOR NO. FOR THE X PROJECTION: /l/

EIGENVECTOR NO. FOR THE Y PROJECTION: /2/

(PROMPT NOTES: ******** ****************

Measurement Number -

If tne user types a carriage return the first
time this prompt occurs, the program will exit.
The following checks are made on the measurement
number:

1) check for a valid measurement number
(greater than zero and less than or
equal to the vector dimensionality)

2) check to see that the user does not
type the same measurement number twice

3) check to see that the user does not
eliminate all the measurements

Note: errors from conditions 1 and 2 above cause
the user to remain in prompt mode; an error
from condition 3 causes an error message to
be printed and the program to exit.

290



--

S2EIGV (continued)

til Eigenvector Number-

The program stays in prompt mode until the user
types in a valid eigenvector number (greater than
zero and less than or equal to the number of
measurements used in the computation)

Printout? -

The program stays in prompt mode until the user
types Y or N as the first character typed. If
the user types Y a lineprinter copy of the above
NUMBER/EIGENVALUE table is produced

Session with LONG prompts

INITIALIZING DISPLAY FILE HEADERS

DO YOU WISH TO ELIMINATE MEASUREMENTS FROM THE
COMPUTATION?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT /Y/

MEASUREMENT NUMBER = /l/
MEASUREMENT NUMBER = /3/
MEASUREMENT NUMBER = /<CR>/

NUMBER EIGENVALUE

1 3. 143891E+04
2 2. 442550E+03

DO YOU WANT A PRINTOUT OF THE EIGENVALUES?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT /N/

ENTER THE EIGENVECTOR NUMBER TO USE FOR THE X
PROJECTION: /1/

ENTER THE EIGENVECTOR NUMBER TO USE FOR THE Y
PROJECTION: /2/

291

Ui4f _____________________________________



CC. MAN LA E: S2FSHP

CA:EGCRY: E.RUCU E ANALYSIS CCIMA! 5

FUNCTICNAL £ESCSIPTICtJ:

S2FSHF projects the selected data set on two fisher
directions which coorespond to two pairs of data
classes within the selected data set. Note, the resultant
fisher discriminant vectors are orthonormalized before
they are used for data projection.

USER INTERACTION:

The user is asked:

1) To select a pair of classes to be used
in the computation of the first fisher
discriminant.

2) To select a pair of classes to be used
in the computation of the second fisher
discriminant.

3) If coy -iance or scatter matrices are to
be used in the computations.

4 ) If any measurements are to be eliminated
from the computations.

EXAMPLE(S):

The following examples assume that ABCD,EFGHiJKL,
and MNOP are classes in the data set. Classes ABCD
and MNOP will be used to compute fisher discriminant
1 and EFGH and MNOP will be used to compute fisher
discriminant 2. Scatter matrices will be used in
the computations, and measurement number 3 will be
eliminated.

292

,



" F (C': t n Ue,

-ession with S-, R, T prczp's

I:N:T:ALI:IG DISPLAY FILE HEADERU

SELECT T70 CLASSES FRCN TE L:ST 2ELOW TO USE it
TEE CCMPUTATION CF FIShER 1

CLASS SELECT LIST

AC EFGH JKL MNCP

CLASS SYMEOLS: /A'I/
SELECT TWC CLASSES FRCM THE LIST BELCW TO JOSE I!.
THE COMPUTATION OF FISHER 2

ABCD EFGH IJKL NOP

CLASS SYNYBCLS: /EM/
CCVARIANCE/SCATTER M- ATRIX CPTICN? 0/I / 1/
EL7,IITE MEASUREMENTS? Y/N /Y/

MEAS :1/

MEAS = /<CR>/

(PRCMPT NCTES: *

If the two fisher discriminants are linearly depercent,
the message 'THE TWO FISHER PRCJECTIC11 VECTCRS ARE
LINEARLY DEPENDENT. THE X AND Y PRCJECTICN VECTCRS W:LL
BE THE SAME VECTOR.' is printed.

Class Symbols -

The class symbol string must be typed on a single
line with no intermittent blanks, commas, and the
like. If the class symbols typed are invalid class
symbols, i.e. they don't exist, S2FSHP will prompt
the user again for some valid class symbols. If
the user types in one or more invalid class symbols,
then all valid class symbols must be retyped on the
next try.

• *** ************** ** *** ************** ** *** ** *** * ******** )

293

2 01



S2FSHP (continued)

Session with LONG prompts

INITIALIZING DISPLAY FILE HEADERS

FROM THE LIST OF LOWEST NODES BELOW, SELECT THE
FIRST AND SECOND CLASS TO BE USED TO CCMPUTE
FISHER 1 (IE. CS)

CLASS SELECT LIST

ABCD EFGH IJKL MNOP

CLASS SYMBOLS: /AM/
FROM THE LIST OF LOWEST NODES BELOW, SELECT THE
FIRST AND SECOND CLASS TO BE USED TO COMPUTE
FISHER 2 (IE. CS)

CLASS SELECT LIST

ABCD EFGH IJKL MNOP

CLASS SYMBOLS: /EM/

ARE COVARIANCE OR SCATTER MATRICES TO BE USED IN THE
COMPUTATION OF THE FISHER DISCRIMINANT
(0-COVARIANCE, 1-SCATTER'? /1/

DO YOU WISH TO ELIMINATE MEASUREMENTS FROM THE
COMPUTATION?
TYPE Y FOR YES, N FOR NO, <CR> TO EXIT /Y/

MEASUREMENT NUMBER = /3/
MEASUREMENT NUMBER = /<CR>/

294



SCALRET

CCMMAND NAME: SCALRET

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

SCALRET is the complementary function of of SCALZM.
Upon completion of one or more zooming operations on
a one or two-space display, SCALRET allows you to
obtain the original global display.

USER INTERACTION: NONE

295



S CA LZ

COMMAND NAME: SCALZM

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

SCALZM (scale zoom) changes the scale of a one-space or
two-space display by "zooming in" on a user defined subset
of the current display.

USER INTERACTION:

FOR ONE SPACE DISPLAYS ONLY

Using the graphics cursor, you are to select new minimum
and maximum points for which the display is to be expanded.
The first time, position the graphics cursor at the
left-most point on the baseline of the display and enter
any character except IQ'. The second time, position the
graphics cursor at the right-most point on the baseline and
again enter any character except IQ'. (If a IQ' is
entered, you will immediately exit SCALZM.) Two lines are
drawn on the current display indicating the area to be
zoomed. You will be asked if the border is correct. If
the reply is yes ('Y'), then SCALZM will continue. If the
reply is no (IN'), then you will be able to zoom another
subarea of the current display

FOR TWO SPACE DISPLAYS ONLY

Using the graphics cursor, you are to select the portion of
the current display which is to be expanded. The first
time, position the graphics cursor at the lower left hand
corner of the desired display area and enter any character
except IQ'. The second time position the graphics cursor
at the upper right hand corner of the desired display area
and again enter any character except 'Q'1. (If a IQ' is
entered, you will immediately exit SCALZM.) A box will be
drawn on the current display indicating the area to be
zoomed. You will be asked if the border (box) is correct.
If the reply is yes ('Y'), then SCAL2M will continue. if
the reply is no (IN'), then you will be able to zoom
another subarea of the current display.

296



SCALZM (continued)

(NOTES:

Due to the limitations of visible space on the display
screen, there will not be any differences between
'SHORT' and 'LONG' prompts. If you enter ' ' , it
will be accepted as an input for the new subarea.

However, if you have changed the default prompt mode
to be 'long' by means of the 'CDEFAULT' command, you
will receive a preliminary explanation of how to
respond to the prompts issued by SCALZM.

***.***************I****I*O*****I********I***I*)

297 '



SELECT

COMMAND NAME: SELECT

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

SELECT gives the user the ability to determine which class
symbols are to be displayed at the OLPARS user's terminal
in a one- or two-space display. SELECT checks the Display
Information (DI) File for a valid display code, cluster or
scatter, or macro or micro. If the display code is valid,
the user is asked to type in the class symbols to be
displayed. Otherwise, the program exits. SELECT writes
the display flag for each DI File logical entry. If the
user has indicated that a class symbol is to be displayed,
the display flag for that class is "turned on" (set).
Otherwise, the display flag for the given class is "turned
off" (not set). The appropriate display (cluster, scatter,
macro, or micro) is then put up at the user's terminal.

USER INTERACTION:

The user is asked to type in the class symbols.

EXAMPLE(S:

The following two examples assume that class symbols
A,B,C,D,E,F,G, and H exist in the DI file.

Session with SHORT prompts
-----------------------

For the following example class symbols A,B,C, and D
will be displayed. Class symbols E,F,G, and H will
not be displayed.

CLASS SYMBOLS: /ABCD/

298



SELECT (continued)

(PROMPT NOTES:

Class Symbols-

The class symbol string must be typed on a single
line with no intermittent blanks, commas, and the
like. If the class symbols typed do not exist in
the DI file (invalid class symbols), SELECT will
stay in prompt mode. If the user types in one or
more invalid class symbols, then all valid class
symbols must be retyped on the next try. A minus
sign preceding the class symbols indicates that
the class symbols typed are not to be displayed.
Typing only a minus sign is invalid and SELECT
remains in prompt mode.

Session with LONG prompts

For the following example, class symbols B,D,F, and H
will be displayed. Class symbols AS C,E, and G will
not be displayed.

TYPE CLASS SYMBOLS ON A SINGLE LINE. (e.g. ABCD).
A MINUS SIGN AT THE BEGINNING INDICATES THAT THE CLASS
SYMBOLS ARE NOT TO BE DISPLAYED.
CLASS SYMBOLS: /-ACEG/

299



SETDS

COMMAND NAME: SETDS

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

SETDS sets a given data set as the "current" data set.

USER INTERACTION:

The user is prompted for a treename and a node name.
If neither exists within OLPARS, the user
will be prompted for another value of each. If an
initial colon is typed as the first character of the
treename, the senior node of that tree will be used
as the current node, and there will be no prompt for
a node name.

EXAMPLE(S):

In the following examples, 'TESTTREE' is the current
data tree name and '**** is the current node name
(denoting the senior node).

Session with SHORT prompts

TREE NAME? /TESTTREE/

NODE NAME? /****/

(PROMPT NOTES: * * * *** *

In the above example, if a colon ':' had been
entered before the T in TESTREE, the node name
prompt would not have occurred. See the following
example.

300



SETDS (continued)

Session with LONG prompts

TYPE IN NAME OF OLPARS DATA TREE THAT IS TO
BE USED IN THE CURRENT DATA SET NAME
INITIAL 1:' MEANS START AT SENIOR NODE
(8 CHARS. MAX.) -/:TESTTREE/

301

fi



! . . .. . . - - I ' . . I .I I I o ... ... ... ..___ __ __

SETLOG

COMMAND NAME: SETLOG

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

SETLOG takes an existing logic tree and makes it
the current logic tree (restores an old logic).
The menu is then displayed.

USER INTERACTION:

The user is prompted for a treename. If the treename
is an invalid name or the treename does not
exist, the user will be asked for another treename.

EXAMPLES):

In the following examples, 'TESTTREE' is the name
to be made current.

Session with SHORT prompts

TREENAME? /TESTTREE/

Session with LONG prompts

ENTER THE LOGIC TREENAME (MAXIUMUM 8 CHARACTERS)?
/TESTTREE/

302



SLCTMEAS

COMMAND NAME: SLCTMEAS

CATEGORY: MEASUREMENT EVALUATION COMMAND (subsidiary)

FUNCTIONAL DESCRIPTION:

SLCTMEAS allows the user to select the measurements to be
used to create a new data tree during a data set
transformation (see TRANSFRM). The current display must be
a rank order display.

Measurements are selected either by entering a threshold,
or by entering measurement numbers. If a threshold is
entered, those measurements whose values are greater than
the threshold are selected, if DSCRMEAS created the
display, and those measurements whose values are less than
the threshold are selected, if PROBCONF created the
display. An asterisk precedes all measurements to be used
in the data set transformation.

When individual measurements are specified, an asterisk
will precede those measurements that have not been
previously selected. That is, if a measurement has already
been selected (via SLCTMEAS or UNION), and is chosen once
again, it will no longer be selected for transformational
use (the asterisk will no longer precede the measurement).

Note, SLCTMEAS can be used in excess measurement mode.

USER INTERACTION:

The user is asked if (s)he wants to select a threshold
value or specific measurements. Depending upon which
option is chosen, (s)he is prompted for those values.

EXAMPLE(S):

In the following example, the current rank order display
is an overall ranking of measurements. Note, SLCTMEAS
does not change the type of rank order display.

Session with SHORT prompts

(1) ENTER THRESHOLD
(2) ENTER MEASUREMENT(S)
SELECT AN OPTION (I OR 2): /l/
THRESHOLD: /7.56/

303

I III II I IIII I ml i ,



SLCTMEAS (continued)

A RANK ORDER DISPLAY DATE: 13-MAR-81 02:16:36

AN OVERALL RANKING

MEAS VALUE CLASS CLASS PAIR
*4 8.3926E+O0 C A/C
*2 8.3155E+O0 A A/C
1 7.5638E+O0 C B/C
3 6.9224E+00 B A/D

(PROMPT NOTES:

If there is no rank order display for the current
data set, SLCTMEAS notifies the user and exits. If
the user wishes to enter a threshold, the current
rank order display must be either (1) overall, (2)
measurement by class, or (3) measurement by class
pair (see RANK). If the type of ranking is not 1, 2,
or 3, SLCTMEAS notifies the user and exits. If the
user wishes to enter specific measurements, the type
of ranking is unimportant, but if the type of ranking
is not 1, 2, or 3, the user will receive a message
indicating that the current display will not be able
to show which measurements have been selected. In
this case, after SLCTMEAS is finished, the operator
may then use RANK to see if measurements were
correctly selected.

Session with LONG prompts

The following example assumes that the rank order
display above is the current rank order display.
Notice that measurement number four is not a selected
measurement for transformation after SLCTMEAS is
used this time.

OPTIONS:
(1) ENTER A THRESHOLD
(2) ENTER ONE OR MORE MEASUREMENT NUMBERS
TYPE A 'I' OR A '2' DEPENDING ON THE DESIRED OPTION: /2/
ENTER THE MEASUREMENT NUMBER (END WITH 0) - /l/
ENTER THE MEASUREMENT NUMBER (END WITH 0) - /4/
ENTER THE MEASUREMENT NUMBER (END WITH 0) - /0/

304



SLCTMEAS (continued)

A RANK ORDER DISPLAY DATE: 13-MAR-81 02:16:36

AN OVERALL RANKING

MEAS VALUE CLASS CLASS PAIR
4 8.3926E+00 C A/C

*2 8.3155E+00 A A/C
*1 7.5638E+00 B/C

3 6.9224E+00 B A/D

305



SUMMCM

COMMAND NAME: SUMMCM

CATEGORY: UTILITY COMMAND

FUNCTIONAL DESCRIPTION:

SUMMCM displays a confusion matrix summary at the
terminal.

USER INTERACTION:

NONE

306



THRESHMOD

COMMAND NAME: THRESHMOD

CATEGORY: LOGIC DESIGN COMMAND

FUNCTIONAL DESCRIPTION:

THRESHMOD modifies Fisher pairwise logic thresholds at a
user chosen logic node. The user can change the rnumier
of thresholds for a particular class pair, and/or
relocate the thresholds.

This command can only be used after FISHER has created
pairwise logic in the current logic tree.

To evaluate the logic use PWEVAL.

USER INTERACTION:

The user is asked (1) which pairwise logic node should be
modified, (2) which class pair should be modified,
(3) which threshold to move (4) for the new position of
the threshold.

EXAMPLE(S)"

in the following example, the user has decided to
modify pairwise logic node number 3, in particular,
the class pair of 'soy' and 'oats'. Threshold 3 is
moved to a new location. When satisfied, a comma is
entered.

Session with SHORT prompts

LOGIC NODES WITH PAIRWISE LOGIC

23
NODE NUMBER? /3/

(The screen is erased.)

CLASS SELECT LIST

soy oats weat corn

307

_ _ _ _I__ _ _ _ _ _ _ _ _ _



THRESHMOD (continued)

ENTER 2 CLASS DISPLAY SYMBOLS
-OR- 't FOR NEXT CLASS PAIR
-OR- ',' TO EXIT WITH MODIFICATIONS SAVED

CLASS SfMBOLS: /so/

(The projected vectors are displayed.)

THRESHOLD (1-5, 0 TO SAVE MODIFICATION
6 TO CHANGE NUMBER OF THRESHOLDS)? /3/

(Position the graphics cursor on the spot where the
threshold is desired.

Type any alphanumeric key on the terminal (except 'Q')
to enter the threshold value into the current dataset.
A vertical line will be drawn on the display screen at
the threshold point.)

THRESHOLD (1-5, 0 TO SAVE MODIFICATION
6 TO CHANGE NUMBER OF THRESHOLDS)? /0/

(The screen is erased.)

CLASS SELECT LIST

soy oats weat corn

ENTER 2 CLASS DISPLAY SYMBOLS
-OR- '* FOR NEXT CLASS PAIR
-OR- '' TO EXIT WITH MODIFICATIONS SAVED

CLASS SYMBOLS: /,/

(The program puts up the menu)

(PROMPT NOTES) t t

When exiting from the class pair select prompt, a '
is different from a <CR>. The '' will save the changes
and cause the option to be changed to THRESHMOD. A <CR>
is interpreted as the standard OLPARS exit.

When entering a zero (0) to the threshold prompt, any
threshold modifications are saved. The next time this
particular class pair is viewed, the display scaling will
reflect the threshold modifications (i.e., histograms
may look different from the previous display).

When the graphics cursor is activated, a 'Q' response
(quit) is interpreted as the standard OLPARS exit.

308

L



THRESHMOD (continued)

In this example, the user modifies the next class pair
of logic node 3, changes the number of thresholds for
this class pair, and enters a comma when done.

Session with LONG prompts

LOGIC NODES WITH PAIRWISE LOGIC

2 3
ENTER THE LOGIC NODE YOU WISH TO MODIFY - /3/

(The screen is erased.)

CLASS SELECT LIST

soy oats weat corn

ENTER 2 CLASS DISPLAY SYMBOLS
-OR- 1*1 FOR NEXT CLASS PAIR
-OR- ',' TO EXIT WITH MODIFICATIONS SAVED

CLASS SYMBOLS://

(The projected vectors are displayed.)

ENTER THE NUMBER OF THE THRESHOLD YOU WISH
%,TO MOVE (1-5, 0 TO SAVE MODIFICATION
6 TO CHANGE THE NUMBER OF THRESHOLDS) - /6/
NEW NUMBER OF THRESHOLDS - /4/

ENTER THE NUMBER OF THE THRESHOLD YOU WISH
TO MOVE (1-5, 0 TO SAVE MODIFICATION
6 TO CHANGE THE NUMBER OF THRESHOLDS) - /0/

(The screen is erased.)

CLASS SELECT LIST

soy oats weat corn

ENTER 2 CLASS DISPLAY SYMBOLS
-OR- 1*1 FOR NEXT CLASS PAIR
-OR- 191 TO EXIT WITH MODIFICATIONS SAVED

CLASS SYMBOLS: 1,1

(The program puts up the menu)

309



TRANSFRM

COMMAND NAME: TRANSFRM

CATEGORY: MEASUREMENT EVALUATION COMMAND (subsidiary)

FUNCTIONAL DESCRIPTION:

TRANSFRM creates a new data tree whose structure
is identical to the current data set using those
measurements which have been "selected" during
measurement evaluation. In a measurement evaluation
(rank order) display, an asterisk precedes those
measurements which have been "selected." Measure-
ments are selected by running the commands 'SLCTMEAS'
or 'UNION'.

Note, TRANSFRM can be used in excess measurement mode.

USER INTERACTION:

The user is prompted for the name of the OLPARS data
tree to be created.

EXAMPLE(S):

Session with SHORT prompts

NEW TREE NAME? /PEACH/

TRANSFORMATION COMPLETE

(PROMPT NOTES:

If the tree name entered by the user is the same as
the current tree name, an error message is printed
and 'TRANSFRM' remains in prompt mode. If the tree
name entered already exists, but is not the same as
the current tree name, the user is asked if s(he)
wants to destroy the existing tree. If the user
types 'Y' (for yes), 'TRANSFRM' creates a new tree
with the user-specified name. If the user types 'N'
(for no), 'TRANSFRM' asks for another tree name.

310

II I I J j | j I I I I •



TRANSFRM (continued)

Session with LONG prompts

The following example assumes the name of the
current data tree is 'APPLE'. The user also has
a tree in her/his directory called 'MAPLE'.
The user decides to destroy the tree 'MAPLE',
so that the name 'MAPLE' can be used for the
tree to be created as a result of the transformation.

TYPE IN NAME TO GIVE TO THE OLPARS DATA TREE
THAT WILL BE CREATED AS A RESULT OF THE TRANSFORMATION
(8 CHARS. MAX.) - /APPLE/
NEW TREE NAME MUST BE DIFFERENT
FROM CURRENT DATA SET TREE NAME
TYPE IN NAME TO GIVE TO THE OLPARS DATA TREE
THAT WILL BE CREATED AS A RESULT OF THE TRANSFORMATION
(8 CHARS. MAX.) - /MAPLE/
THE NAME "MAPLE"
IS IN USE IN YOUR DIRECTORY;
DO YOU WANT TO DESTROY THE DATA SET WITH THAT NAME (YIN)?
/ Y/
TRANSFORMATION COMPLETE

311



UNION

COMMAND NAME: UNION

CATEGORY: MEASUREMENT EVALUATION COMMAND (subsidiary)

FUNCTIONAL DESCRIPTIG".:

UNION performs a 'union by class' or 'union by class pair'
function. The 'union by class' function uses the
discr~iminant measurement vectors whose values separate one
class from all other classes (class values). The 'union by
class pair' function uses the discriminant measure ment
vectors whose value3 separate one class from another class
(class pair values). For both functions, the discriminant
values for each vector are ranked, and the measurement
which corresponds to either the smallest or largest
discriminant value has an asterisk placed next to it on the
display. In the 'union by class' function, there are as
many discriminant measurement vectors as there are classes.
Inus, the maximum number of measurements that can have an
asterisk placed next to them is the same as the number of
classes in the data set. In the 'union by class pair'
function, there are as many discriminant measurement
vectors as there are class pairs. Therefore, the maximum
n~umber of measurements that can have an asterisk placed
next to them is the same as the number of class pairs in
the data set (see NOTE in 'RANK' User's Manual description
defining 'class pairs'). In both cases, 'union by class'
and 'union by class pair', the minimum number of
measurements that can have an asterisk placed next to them
is 1, because the same measurement could be the smallest
(or largest) discriminant value in each vector. UNION is
therefore .-he union (as in set notation) of the best
measurements for separating one class from all other
classes ('union by class') or for separating one class from
another class ('union by class pair'). (NOTE: UNION does
not erase selected measurements). All discriminant
measurement values are ranked in ascending (PROBCONF) or
descending (DSCRMEAS) order, depending on the 'CURRENT
OPTION' (most recently executed Major Measurement
Evaluation Command). UNION puts up an 'overall' ranking
display.

Note, UNION can be used in excess measurement mode.

312

A i4



UNION (continued)

USER INTERACTION:

The user is asked to select ore of thie following options:
(1) union by class
(2) union by class pair

EXAMPLE(S):

Session with SHORT prompts

SELECT AN OPTION:
(1) UNION BY CLASS
(2) UNION BY CLASS PAIR
OPTION # /l/

(PROMPT NOTES:

UNION remains in prompt mode until the user types a

'1' or a '2' or the OLPARS character for exiting

commands.

Session with LONG prompts

TYPE A Ill OR A '2' DEPENDING ON THE DESIRED OPTION #:
(1) UNION BY CLASS
(2) UNION BY CLASS PAIR
OPTION NUMBER 12/



References

[l] Multics OLPARS Operating System, Final

Technical Report, Volume I, RADC-TR-76-271,
September, 1976.

[2] D.H. Foley, "Considerations Of Sample And

Feature Size", IEEE Transactions On Information

Theory, Volume IT-18, No. 5, September, 1972,
pp. 618-626.

[3] Final Report of Project OLPARS V,
Contract Number MDA 904-78-C-0576, January 5, 1980.

[41 Hart, P.E., "The Condensed Nearest Neighbor Rule",

IEEE Transactions On Information Theory, Volume IT-14,
May 1968, pp. 515-576.

£5] Sammon, J.W., "Interactive Pattern Analysis And

Classification", IEEE Transactions On Computers,

Volume C-19, Number 7, July 1970.

314



'GLOSSARY

This glossary contains terms and phrases used throughout

OLPARS. The letter in parenthesis, following the term or phrase,

represents the subject material or context in which the term or

phrase is used.

C - represents "command"

D - represents "display"

L - represents "logic tree"

T - represents "data tree"

Assigned Classes (L.,D) - The classes in a logic tree at which
vectors are "placed" as the result of a partial or an overall
logic evaluation. A confusion matrix display shows how many
vectors from the design (partial evaluation) or test (overall
evaluation) data set were sent to each assigned class.

Associated Class Names - Data class names associated with a node in
a logic tree. The associated class names indicate which data
classes from the design data set are present at the logic
node.

Between-Group Logic (L) - Usually referred to simply as "group
logic." The logic defines regions in a multi-dimensional
space, and each region may contain one or more classes. The
logic does not necessarily break down a group of classes into
single classes, as in the case of complete within-group logic,
but instead distinguishes between groups of classes.

Class Display Symbol (D) - The first character of a class name. On
a display, the character represents a data class or vector of
a data class.

Class Pair (D) - Two data classes for which some measurement has
been calculated (e.g. a Fisher direction or a discriminant
measure) . On a two-space display, the display flag symbol
identifies class pairs. On a rank order display, the class
pair is represented as "A/B"1, where "A"l and "IB" are the class
display symbols of the two classes.

315



0 OS S ARY

Class Select List - A list of class names or class display symbols
presented to a user so that one or more may be selected for
use by an OLPARS command.

Classification Table (L) - The table displayed at the terminal
during classifier mode of overall logic evaluation. The table
consists of three columns: (1) logic node, (2) associated
classes, and (3) vector count (the number of vectors at a
logic node) . The table differs from a confusion matrix
display in that the data classes of the vectors oeing
evaluated are not shown, and no summary statistics are
presented. A printed listing of the table may be obtained.

Cluster Plot (D) - A two-dimensional representation of N-space
vectors, with each vector occupying a location within a grid.

Complete Within-Group Logic - Or called "within-group" logic
mathematically defines a region for each class at a logic
node. Therefore, within-group logic always completely defines
logic for the group of classes on which it is designed.

Completed Logic Node (L) - A logic node which has only one class
present.

Completed Logic Tree (L) - A logic tree in which all lowest nodes
have only a single class present.

Confusion Matrix (D) - Summary, in table format, of the results of
a partial or an overall logic evaluation.

Convex Point CD) - A user-selected point on the convex side of a
boundary. The point is used during logic evaluation to
determine on which side of a boundary a vector lies.

Convex Region (D) - A region, defined by a user drawn boundary, is
convex if it lies completely on one side of any extended
boundary segment.

Convex Side - The inside of the area delimited by the convex
boundary.

Coordinate Projection (D) - Projection of each vector in a data set
onto one Cone-space) or two (two-space) vectors containing all
zeros and a one in a user-selected position. The result for
each vector is therefore one Cone-space) or two Ctwo-space)
features which can be plotted.

Covariance Matrix (T) - A symmetric matrix which gives a measure of
the variance between each pair of measurements in a data set.

Current Data Set (T) - The data set which has been most recently
designated by the operator to be used by OLPARS commands.

316



GLOSSARY

Current Logic (L) - The logic tree which has been most recently
designated by the operator to be used by OLPARS logic
commands.

Current Option (D) - The name of the OLPARS command which most
recently changed the operational or functional state of
OLPARS. The current option is used to determine which menu
(option list) should be displayed to the user.

Data Class (T) - A group of vectors representing a state in the
environment.

Data Partition (Boundary) (D) - A convex boundary, consisting of a
maximum of five line segments used in both structu.'e analysis
and logic design.

Data Set Dimensionality (T) - The number of features that comprise
each vector of a data set.

Data Vector (T) - An object or an event in a state of the
environment.

Design Data Set (L) - A data set for which logic has been designed.

Discriminant Measure - A measure of the discriminatory power of a
set of features. This significance measure is particularly
useful for ranking a set of features when the class
conditional probability distributions are approximately
unimodal. OLPARS uses three types of discriminant measures
which are calculated by the command DSCRMEAS. The three types
of discriminant measures are: (1) the discriminant measure
for differentiating one class from another using a particular
feature, (2) the discriminant measure for differentiating one
class from all other classes using a particular feature, and
(3) the discriminant measure for distinguishing all classes
usirg a particular feature.

Eigenvector Projection (T,D) - A projection of all vectors in a
data set onto one (one-space) or two (two-space) eigenvectors
which correspond to user-selected eigenvalues.

Excess Measurement Mode (T) - A data set which has an excess number
of measurements can only be operated on by a small subset of
OLPARS commands. Those commands are said to run in excess
measurement mode.

Feature (Measurement) (T) - A raw measurement or a statistic
obtained from raw measurements.

Feature Extraction (T) - The process of defining features
(measurements) that comprise the vector space.

317

L .'.j



GLOSSARY

Fisher Direction (Projection) (L) - An N-dimersional vector that is
optimal for discriminating between two classes.

Global Scale (D) - In a one or two-space display, a scale that
encompasses the entire data range.

Incomplete Logic (L) - A logic tree that contains incomplete logic
nodes.

Incomplete Logic Node (L) - A lowest logic node for which there is
more than one class present.

Logic - Mathematical algorithms which define regions to separate
classes.

Logic Design (L) - The application of mathematical algorithms to a
data set for the purpose of defining regions in a
multi-dimensional space. Each region contains one or more of
the data classes to which the algorithms have been applied.

Macro Plot (D) - A one-space display in which a frequency histogram
for each data class is given on a separate baseline.

Mean Vector (T) - A vector composed of the means of the
measurements (features) in a data set. Mean vectors are
computed for each node of a data tree.

Measurement Evaluation (T) - Evaluation of the measurements in a
data set based on the ability of the measurements to
discriminate between data classes.

Measurement Transformation (T) - Creation of a new data tree using
only those measurements which have been selected through the
use of measurement evaluation routines (SLCTMEAS and UNION),
or measurements explicitly created with the measurement
transformation command (MEASXFRM).

Micro Plot (D) - A one-space display in which a frequency histogram
for each data class is superimposed on a single base line.

Multimodal (T) - A data class is considered to be multimodal when
vectors from the class cluster around more than one point
(vector) in the class.

Nearest Mean Vector (L) - Logic which uses the class means as the
main component for defining regions for the classes at a logic
node. During evaluation, the distance between a vector and
each class mean is calculated. The vector is assigned to the
class which it is closest to in distance, unless the distance
of the vector from the class exceeds a user-specified distance
(in this case the vector is rejected).

318

.!I..



G'LOSSARY

One-Space (D) - Refers to 3 type of projection or an OLPARS display
(plot) type. In a one-space projection, each vector in a data
set is projected onto a user-selected projection vector. The
result for each vector is a scalar (single value) which can be
plotted along a single baseline (axis).

Option List (Menu) (D) - Although there is no restriction on the
order in which OL-PARS commands are invoked, commands should be
run in a logical sequence (e.g. you would not attempt to
evaluate logic before creating it) . The OLPARS option list is
displayed at the completion of each command to aid the user in
selecting the next comma-i to be invoked.

Overall Logic Evaluation (L) - Evaluation of an entire logic tree,
beginning at the root (senior) node. Vectors from either the
design data set, cr from a test data set having the same
dimensionality as the design data set, are tested at nodes
along a path of the logic tree until all vectors are assigned
to a lowest node.

Overlap Graph (T) - An overlap graph shows, for a particular
measurement, the amount of overlap among the classes of a data
set. The graph consists of stacked horizontal lines which are
associated with data classes. Each line represents the range
of the particular measurement for the data class being
represented. The range of each class is scaled to the overall
minimium and maximum values of the data set.

Pairwise Logic (L) _ Logic which defines regions based on class
pair statistics. Discriminating values are computed for all
possible pairs of classes at a logic node. During evaluation,
a vector is compared against the discriminating values for all
class pairs. One class from each class pair receives a vote.
The number of votes received by each class is tallied and the
vector is assigned to the class with the most votes, providing
a user-specified minimum vote count is satisfied. If the
minimum vote count is not satisfied, the vector is rejected.

Partial Logic Evaluation (L) - Evaluation of vectors from the
design data set at a single node in a logic tree. The vectors
are assigned to nodes beneath the node at which the logic
exists. A confusion matrix display is created.

Projection - Dot product of two vectors.

Prompt Mode (C) - Determines the type of requests for input
(prompts) the user will receive from a command. The prompt
mode may either be "short" or "long". In short prompt mode,
the user receives short, terse prompts. In long prompt mode,
the user receives prompts with more information about what
should be typed. Users familiar with OLPARS will most likely
prefer short prompts. The command CDEFAULT may be used to
change the prompt mode.

319



GLOSSARY

Rank Order Display (D) - The type of display created by measuremen't
evaluation commands.

Raw Measurement - Data taken directly from the environment. The
measurement may or may not be a class discriminating feature.

Reassociated Class Name (L) - Class names associated with the
lowest nodes of a completed logic tree. The reassociated
class names may be different than the original design data
class names. During an overall logic evaluation, using a test
data set, the reassociated class names may be used to
determine whether or not vectors are correctly classified.
Therefore, the reassociated names are useful when the test
data set class names are different from the design data set
class names.

Rectangular Scale (D) - Refers to a two-space display in which the
size of the units of the X and Y axes are different.

Restructure CT) - The process of subdividing a single data class
into more classes.

Scale Mode (D) - Refers to the amount of the data range being
displayed, either Global (entire range) or Zoom (sub-range).

Scale Type CD) - The type of scaling used on a one or two-space
display. For a one-space display the scale type is either
PROBABILITIES or COUNTS. For a two-space display the scale
type is either SQUARE or RECTANGULAR.

Scatter Matrix CT) - A symmetric matrix which gives a measure of
the variance between each pair of measurements in a data set.
The scatter matrix for a data set differs from the covariance
matrix in that the elements have not been divided by the total
number of vectors in the data set. The elements of the matrix
are therefore weighted by the number of vectors per class. It
may be useful to use the scatter matrix of a data set when the
results of calculations should reflect the fact that the data
classes do not have the same number of vectors.

Scatter Plot (D) - A two-dimensional representation of N-space
vectors, with each vector located at its natural projection
point on the screen.

Senior Node (L,T) -The root node of a data or logic tree.

Square Scale CD) -Refers to a two-space display in which the value

of the measurement units on both the X and Y axes are equal.

320



GL.OSSARY

Structure Analysis - Projecting a data set onto a one or two-space
plane for the purpose of determining if the structure of the
data for a particular class is unimodal or multimodal. If one
or more data classes are multimodal, partitions may be drawn
to subdivide the classes and the data set can be restructured.
The one and two-space projections may also be used as the
basis for group logic design.

Test Data Set (L) - A user's data should be divided into two data
sets. One data set should be used to design logic, and one to
test the logic. The data set used to test the logic is called
the test data set.

True Classes (D,L) - During logic evaluation, the classes in the
dat a set being evaluated are called the true classes.

Two-Space (D) - Refers to a type of projection or an OLPARS display
(plot) type. In a two-space projection, each vector in a data
set is projected onto two user-selected projection vectors.
The result of the first projection is a scalar which becomes
an X coordinate. The result of the second projection is a
scalar which becomes a coordinate. Each X, Y point can be
plotted along the X and Y axes.

Unimodal - A data class is considered to be unimodal when vectors
from the class cluster around one point (vector) in the class.

Union By Class - Refers to a measurement evaluation function which
ranks measurements for each class and selects, from each
ranking, the best measurement. The result is the union of the
best measurements for distinguishing single classes from all
other classes.

Union By Class Pair - Refers to a measurement evaluation function
which ranks measurements for each class pair and selects from
each ranking, the best measurements. The result is the union
of the best measurements which distinguish one class from
another.

Vector Identifier (T) - A numeric value assigned to a vector for
the purpose of identifying it.

Zoom Scale (D) - In a one or a two space display, a scale that
represents a subsection of the original display.

321

41



APPENDIX A

MULTICS OLPARS MATHEMATICS

This appendix contains a copy of the mathematical section

found in reference [1].

i 2



1.3 MOOS MAIHEMATI CS

This section of the report presents the mathematical
justification or explanation of the algorithms used in MOOS.
Only the general explanation is included here; the reader is
referred to Section 3 for details concerning algorithm
implementation.

1.3.1 Measurement Evaluation

In solving a pattern classification problem, the
researcher will often be concerned with the discriminatory
qualities of the L measurements. In general, it is desirable to
use the minimum number of measuremerts that achieves a satis-
factory solution. To this end, the MOOS system provides three
(3) methods for ranking the discriminatory power of a set of L
measurements.

If desired, the rankings may be used as the basis for a
measurement reduction transformation to a subset consisting of
the M most discriminatory measurements. An optimal method for
selecting a subset of M measurements must involve a consideration
of the decision logic criterion, such as the Bayes Risk or the
probability of error. This, in turn, requires the estimation
of the joint probability functions for all possible n-tuples.
The obvious computational difficulties in obtaining an optimal
ranking preclude this approach in all but the simplest problems.
Therefore, the following sub-optimal algorithms are provided as
options to rank-order the L measurements xl, x2, .. , xL. Each
algorithm provides three distinct types of rankings. The first
uses a significance measure of a particular component, e.g.
for discriminating class i from class J; this significance will
be designated by Mij(xo). The second type of ranking uses a
significance measure ol xp for discriminating class i from all
other classes, and is designated Mi(xp). The last type of
ranking uses a measure of the overall significance of xp for
discriminating all classes, and is designated M(xp).

1.3.1.1 The Discriminant Measure

This algorithm is implemented in the MOOS function
dscrmeas. This significance measure is particularly useful for
ranking the L measurements when the class conditional probability
distributions are approximately unimodal. The discriminant
measure for differentiating class i from class j using measurement
xp is defined as:

Mij(x) - [Ni) - j) 3±il) + (Nj-1)

A-i



where

- the estimated mean of class j along
measurement 

Xp

S0) - the estimated standard deviation of class
Ip j along measurement xp

Ni - the number of vectors in class i

The discriminant measure for differentiating class i
from all other classes using measurement xp is defined as:

K

Mi(xp) T. Mij (xp)
j#i

Finally, the discriminant measure for distinguishing
all classes using measurement xp is defined as:

-(' 4:' Mi (xp) -3J(p

1.3.1.2 The Probability of Confusion Measure

This algorithm is implemented in the MOOS functionprobconf.

This measure is recommended when the assumption of class
mimodality cannot be justified. It is valid for any probability
distribution since it essentially measures the overlap of the
class conditional probabilities. Computationally, it is much
more complex than the previous measure.

Let xp designate the measurement under evaluation and
P(x /Cj), j - 1, 2, ... , k be the marginal class conditional prol
ability distributions. Next, consider the distributions for the
two classes i and j shown in Figure 1 - 14. The measure for
differentiating class i from class j using xp is defined asfollowst

91 g2 +04

Hi ( J') P(xp/Ci)dxp +j'P(XP/C)d + jP(xpICj)dx

A- 2



0.0

00

0"-'

Cid

- A-3



Since the functional forms of the class conditional
probabilities are not known, we estimate the marginal class
distributions using the sample data. This method makes use of
histogram approximations like those shown in Figure 1-15. A
detailed discussion of histogram computation will be preseied lamr.

The measurement x will be divided into cells of
width A The probability ?hat a sample from class j will occupy
the rth cell along measurement Xp is given by

(Q)
P P(xp/Cj)dxprp C0h"

rth cell

Thus, the pairwise measure for differentiating class i from class
j can be computed by:

r(i) P(j~
Mij(Xp) Ij jrp, rpJ

The measure for differentiating class i from all other
classes using xp is defined by:

j#i

Finally, the overall measure of significance of Xp for
differentiating all classes is computed as follows:

i-x) i i-1 J Mi j (xp)

The discriminant measure is the simplest measure and
therefore is the fastest to compute. However, it can produce
misleading results when the data classes are not unimodal. Con-
sider, for example, the two marginal distributions shown in
Figure 1- 16. The discriminant measure for X is quite small, since
the separation between the class means relative to the sum of
their variances is small; however, measurement X yields excellent
between-class discrimination. This weakness is not a problem
with the probability of confusion algorithm, since this latter is
relatively independer.t of the functional form of the class
distributions.

A-4



4-,S4

LO 0

-C.4

04

ow6

A-5



03

0 V

.94 .4 -W

0 0

040

0J0

v- - 4 $4

4 W

x 4 4 1A-6



1.3.1.3 Higher-Order Measurement Evaluation

An algorithm which evaluates higher-order combina-
tions of measurements is implemented in the MOOS function
features. A problem inherent with both the discriminant
measure and the Probability of confusion computations is that
each measurement is treated alone. The featires algorithm may
evaluate one or more measurements at a time using the divergence
measure as its criterion.

The divergence measure is useful in subspace
feature evaluation when the underlying distributions are
multivariate normal or when the underlying distributions are
unimodal (4,5). An advantage of the divergence measure over a
discriminant measure or probability of confusion significance
measure is that it considers the correlation between features.

The divergence J is defined as:

j f [p - P(X/w log (

where p(X/w) is the class conditional probability
distribucioA for any set of measurements X.

Let p(X/wi) be Gaussian, i.e.,

P (X/wi  N(p i , ri)  i - 1,2

where w! are the means and z. are the covariance matrices of
3. 2I

the patterns in classes wi" For Gaussian-distributed Pattern

classes, this becomes:

J - 1/2(ui - v:)T +E.(
+1/2+ -l - 2

1/2 trace(r r.i  + z E. - 21)

The divergence measure for differentiating class
i from class j using measurements x p . .. x_, is obtained by
evaluating the above expression for- the subsoace defined by
measurements x.p, ... X.

Mij(x D ,  ... xq) - J(Xp, ... xC)

The measure for differentiating class i from all
other classes using measurements xp,... Xq is defined as:

Mi(xP, Xq) - K.7,

A-7



The measure for distinguishing all classes using
measurements x# ... x. is defined as:

K
M(x0 , ... x) - M (x , ... xq) -

Ki-l ij j (P ..

Since it is not practical to evaluate all possible
combinations of the L measurements to determine an optimal
feature subspace, a number of suboptimal search procedures are
available.

The forward sequential suboptimal search procedure
finds the "best" subset of N from the original L measurements
using the measure for distinguishing all classes, M(xD ,...x).
The first measurement selected is the best of the L measurements
taien one at a time. The second measurement selected is the
best of the L-1 remaining measurements when taken in combination
with the first selected measurement. The third measurement
selected is the best of the L-2 remaining measurements when
taken in combination with the first and second selected measure-
ment, and so on. The procedure halts when the user-specified
value N is reached.

The union best by class approach to measurement
selection utilizes the measure for distinguishing class i from
all other classes, Mi(x o, ... x j). The procedure is quite
similar to the forward sequentil technique except that at
each step, more than one measurement may be selected. On the
first round, the best measurement for distinguishing each of
the K classes is selected, i.e., anywhere from 1 to K different
measurements may be selected. The second round takes all re-
maining measurements in combination with the previously selected
measurements, and again may add anywhere from i to K new
measurements. The procedure halts when the user-specified
value N is reached or exceeded.

The union best by class pair approach to measurement
selection utilizes the measure for distinguishing class i from
class J, M (x i ... xq). The search algorithm is almost
identical the union best by class procedure. On the first
round the best measurement for distinguishing each of the
Possible class pairs is selected, i.e., anywhere from 1 to
K(K-l)/2 measurements may be selected. The second round (and
all subsequent rounds) takes all the remaining measurements in
combination with the previously selected measurements, and again

A-8



may add anywhere from I to K(K-l)/2 new measurements. The
procedure halts when the user-specified value N is reached or
exceeded.

The measurement selection procedure has a great deal
of flexibility in that the previously described techniques may
be interactively mixed in any sequence. Furthermore, a
preferred subset of the feature space may be selected as a
starting point for the measurement selection computations.

A- 9



1.3.2 Structure Analysis

The basic use of structure analysis in MOOS is in
determining if the structure of the data for a particular class
is unimodal or multimodal. If it is multimodal, it is frequently
better to subdivide the class before attempting to design logic
for distinguishing between classes. This is particularly true
if the logic to be designed is statistically based.

All of the algorithms for structure analysis in MOOS
involve projecting the data onto a one-or two-space and allowing
the analyst to draw a partition(s) of the space if multimodality
is present. All of the projections except one, hLM, are linear.
The linear projections may also be used as the basis for group
logic design.

No justification or explanation is given for coordinateor arbitrary vector projections.

1.3.2.1 The Eigenvector Plane (Least Squares)

The following section is an explanation and proof of
the cantention that planes defined by the two eigenvectors corre-
sponding to the two largest eigenvalues of the estimated covarianc
matrix are optimal By the least squares criterion.

This can be shown as follows:

1. Define a plane by two unit orthogonal vectors ei
and ,2 through a shifted origin denoted by , (k will turn out to
be the mean of the data).

2. Set up an expression for the error (E) that arises
in fitting the data by the plane described in (1). This will be
obtained by summing the squared residuals from the plane.

3. Next, minimize the error E with respect to d, 41 anc
!2, under the constraints that # ande2 be unit vectors and
orthogonal.

4. dwill be found to be the mean vector. The eigen-
vectors of the estimated covariance matrix will be shown to be
solutions to the minimization problem an particularly, the two
eigenvectors corresponding to the largest eigenvalues will turn
Out to be the desired solution. Note that there exists an infinit-
number of solutions, since any orthogonal rotation of l, &2 in
the plane defined by Al and 42 will also be a solution; however,
all these solutions describe the same least squares plane.

A-10



Let

be L-dimensional data vectors

- new crigin for the data

,l, 1 2 define the plane through the new origin.

Define " xi -4

The residual distance squared from the fitting plane for the Kth
data vector is given by

,.Z X ?k- ( k t) %Z< - . ) e2

The fitting error is given by the summation of the squared
residual, i.e.

E M jrk rk j (0Y Y elt )

Using Lagrange multipliers to account for the constraints on
and z we obtain

k- t - t 2 2 -d 2}

Taking the partial with respect to C we obtain

0 E* . -2Xk +2d +2(~ -el 021 t2~.2 21r
Let

A-11)



Substitute

Umd is a sol-,..!on. Thus d is the data mean.

continuing

AE*m (2~ kk 2 2  >3~

Note that the estimated covariance matrix is given by

Z- N y

Let (N-i) Z , and substitute above

A

2 Z e1 -2\ -) -o (A)

A

2 Ze, 2 -2 N 2 2  AX3e. -o (B)

Multiply (A) from the left by e

t
Multiply (B) from the left by e 2

Multiply (A) from the left by 4t
to obtain

A

2 (2)
A

2 tZk ">3 (3)

A-S2

,',w .. . ...A.. .



Substitute back into (A) and (B)

(B) 2 t2 -2 22 -2 X, -

A

Now let .. 9 tl and
A

Ze 2 - o<2 e2 and substitute

into (A) and (B)

(A) > 2 v<1.?. -2 c 1 9 -0

(B) 2 c/2.g2 -2 c/2)2 =0

* A solution plane is given by the two eigenvectors of the
estimated covariance matrixt_

The least squared error is given by

A N

1 p -Z -2-=.2

where R- constant n Yt

or equivalently

E- R - 1 - 2

Therefore, the error is minimized by selecting the two
eigenvectors corresponding to the two largest eigenvalues.

It can aimilarly be shown that the projection on the
eiganvector associated with the largest eigenvalue is the best
(by the least squares criterion) one-space projection.

A- 13



1.3.2.2 Discriminant Projections

The MOOS functions ardM - and a offer the
analyst another projection direction or plane.!The only differ-
ence between the two functions is in how the two classes upon
which the projection is based are determined. The two classes
may be composed of any two classes of the current data set or
they may be composed of any two groups of classes which are
"lumped together" for the purpose of determining the projection
direction(s) .

The entire current data set is projected into the
space defined by the Fisher Discriminant dl and a second vector
2, where 42 is that direction which maximizes the projected

between-class scatter relative to the sum of the projected
within-class scatter, under the constraint that A2 be
orthogonal to di. In summary,

~ LL - 4 Er 3 1)W]

where cI and C- 2 are normalizing constants

- the difference between the class mean vectors, $l-A_-(2

W - sum of the within-class scatter matrices

Notice that both d and _42 are computed using W-1. if
the data lies in a subspace, then it can be shown that W will be
singular. If the data is approximately contained in any sub-
space, then W will at best be ill-conditioned. In either case,
the numerical computation of W-1 will be extremely tenuous.
Thus, prior to computing W-l, W must first be checked to
determine if it is ill-conditioned or singular. In either case,
we will compute a subspace such that when the data is
orthogonally projected onto this subspace, the Wne w - TWoldTT
will be well-conditioned. Next, 41 and 42 will be computed in
the subspace using Wnew, and finally, we will transform Ai and

,d2 back to the original L-dimensional space.

If the one-space option is chosen the data is
projected on Al, that is, in the Fisher direction only,

A-14



1.3.2.3 Generalized Discriminant Projections

The MOOS function gndv$ . offers the analyst
the capability of projectingdata onto a discriminant direction
or Dlane which has been optimized to produce maximum discrimina-
tion for all classes. This is a generalization of the Fisher
discriminant projection described in Section 1.3.2.2.

The Fisher discriminant is obtained by solving for
the unit vector d which maximizes the following ratio:

R - dTBd

where B is the between-class scatter matrix, and W is the sum
of the within-class scatter matrices.

To solve for the generalized Fisher discriminant"
directions, we take the vector derivative of the above ratio
R with respect to d and set the resultant equation to zero.
The Drocedure generates the following generalized eigenvector
equation. 0

LB - Wd-0

'W~1B -\'d - 0

The generalized discriminant vectTrs are the
eigenvectors of the non-symmetric matrix W_ B. The rank
of the between-class scatter matrix for the K-class discrimina-
tion problem is K-i, therefore, no more than K-I nonzero
eigenvector solutions exist. Thus, the generalized discriminant
vector function produces K-i discriminant vectors, with the
vectors which corresnond to the largest eigenvalues producing
the maximum discrimination. The Gram-Schmidt orthonormaliza-
tion technique is applied to the eigenvectors to insure that
they are orthogonal unit vectors (6).

A- 15



I I:

I.3.2. 4 Nonlinear Mapving

The Nonlinear Mapping Algorithm (NLM) is based upon
a point mapping of the N L-dimensional vectors from the L-space
to a lower-dimensional space such that the inherent structure of
the data is approximately preserved under the mapping. The
approximate structure preservation is accomplished by fitting N
points in the lower-dimensional space such that their interpoint
distances approximate the corresponding interpoint distances in
the L-space.

Suppose that we have N vectors in an L-space designated
Xi, i - 1, ..., N and corresponding to these, we define N vectors
in the two-space designated Yi, i = 1, ... , N. Let the distance
between the vectors Xi and Xi in the L-space be defined by

dij-* - dist Ei, x]i

and the distance between the corresponding vectors Yi and Yj in
the two-space be defined by

dij " dist iYJ

Let us now randomly1 choose an initial two-space configuration
for the Y vectors and denote this configuration as follows:

12 LY221 LNj

1 - For the purpose of this discussion it is convenient to think
of the starting configuration as being selected randomly;
however, in practice the initial configuration for the vectors
is found by projecting the L-dimensional data orthogonally
onto a two-space spanned by the two original coordinates with
largest variances.

A- 16



Next we compute all the two-space interpoint distances
d-, which are then used to define an error E; E is a measure of
how well the present configuration of N points in the two-space
fits the N points in the L-space, i.e.,

1 N " dij

---jdjjE = T

,[i] i<j dij*

i<j

Note that the error is a function of the 2*N variables ypq
p - 1, ..., N and q - 1, 2. The next step in the NLM algorithm
is to adjust the Ypq variables or,equivalently, cnange the 2-space
configuration so as to decrease the error. We use a steepest
descent procedure to search for a minimum error.

Let E(m) be defined as the mapping error after the
mth iteration, i.e.,

N

i -* - 2,4E(m) c F di j* dij (m) / dij*
i<j L

where

N r
c-~ Idij*

and

22
dij (m)m - Yjk(m)J2

k-I I

The new 2-space configuration at time m + 1 is given by

ypq(m + 1) - ypq(m).- (MF).Apq(m)

A- 17

-2 d .. ... ; ' L'' ' *' ., ',- , :
. ... . . . .. ] I I h l



where

ypq (m) / ypq(m) 2

and ,M is the "magic factor" which was determined empirically
co be MF = 0.3. The partial derivatives are given by

E - -2 d -d(Ypq-Yjq)

j p
and

N

2 / d>...Y)
-2 S pq q+j

2 c dpj. dij _d).,2~ i-i
ypqJ1

In our program we take precautions to 'event any two points in

the two-space from becoming identical. This prevents the partialsfrom "blowing up ."

Because the number of computations required in the NLMalgorithm is approximately proportional to N2 /2 (where N is the
number of vectors) , the MOOS implementation of NLM has an upper
limit of 200 vectors. If the number of vectors in the current
data set exceeds 200, a reduction is required; the algorithm
for performing this reduction is explained below.

The user specifies the number of vectors (or clustercenters) to which he wishes the set to be reduced. If the current
data set contains more than one class, the user also specifieswhether he wants the number of vectors in each class cf the new
set to be the same. or proportional to the number of vectors ineach class of the original data set. The reduction process is
then Performed on one class at a time.

A-18

, .



Given that M is the number of vectors in the original
class, and N (N<M) is the number of vectors desired for the re-
duced class, then the number of original vectors lumped together
to produce a reduced vector is 141N-K. Each of the N reduced
vectors is thus the mean vector of K vectors from the original
class. The selection as to which K vectors are to be clustered
together is made as follows: The entire set of vectors is
searched; the vector which is farthest away (in the Euclidean
sense) from the mean of the entire class is picked as a starting
vector. Then the K-1 closest vectors to that starting vector are
found, and the mean vector of those l+(K-1)inK vectors is taken
as the reduced vector or cluster center. The starting vector
for the next clus ter center is found from among the remaining
vectors by searching for the one furthest away from the previous
cluster; the clustering process is repeated as often as necessary.
(If K is not an integer, then the first A (A<N where A is the
remainder of 14/N) cluster centers will be the mean of D0 + 1
vectors and the remaining N-A cluster centers will be the mean of
1Y3 vectors.)

1.3.3 Logic Design

In general, the primary goal of a pattern classification
analyst is to design a logic, or series of tests, which will,
with a suitable degree of accuracy, assign an unlabeled vector
from the feature space to a particular class (or reject it as
unclassifiable within the required degree of probability).

MOOS provides the analyst with several types of logic desi.
algorithms and variations within each type.

1.1.3.1 Group Logic Design

In group logic, the analyst makes an interactive,
subjective decision and actually participates in the logic design
process. The particular node of the logic tree for which logic
is being designed is examined; the vectors from the classes
present there are projected on a one- or two-space. If there is
(in the analyst's judgmnt) sufficient separation between classes,
or between sxroups of classes, he may draw one or two boundaries
so that the reature space is partitioned into two or three
regions. These regions are then labeled as to the class or
classes present in them (a region may be labeled as the null class
or reject region). This is illustrated in Figure 1-17.

A- 19



A,B,C,D,E

A E B
C D
D

FIGURE 1-17 LOGIC TREE NODE - GROUP LOGIC

In this example, group logic which was designed at node m
separated the five classes present (A,B,C,D, and E) into three
groups. Class B was completely separable from the other classes
and was assigned to node p of the logic tree; the remaining
portions of the feature space, assigned to nodes n and o, contain
the groups of classes A,C and D, and E and 1 respectively. Notice
that the samples from class D fell into both regions; this is
permissible.

For the one-space implementation of these logics, the
mathematics is extremely simple. The unlabeled vector to be
classified is merely projected (dot product) onto the projection
direction (discriminant) ; the value of this scalar is then
compared to the value of the boundary (threshold) drawn by the user.

Two-space logic mathematics is slightly more complicated
it is illustrated below.

When the user defines a two-space boundary, he draws on
the projection plane, from one to five connected line segments
which must define a convex region; he then draws a reference point
indicating which is the convex side. See Figure 1-18 on the
Ollowing page.

A-20



/

FIGURE

3-Line Segment, 2-Space Bounmdary.

The transition from the boundary drawn on the two-space
projection to the mathematical logic creates a sequence of dis-
criminant vectors and thresholds, one pair for each line segment.
In the evaluation of the logic, the unmlabeled vector is projected
on each discriminant in turn and is then compared to the threshold.

f it is less than the threshold for any given line segment, the
vector is on the non-convex side of the partition; if it is greate:
than the threshold, it is on the convex side of the partition. The
determination of the discriminant and of the threshold for a line
segment follows.

Given three points on the projected plane

point S (boundary start point)
point E (boundary end point)
point C (point on "convex" side of boundary)

if these are considered as vectors (in the projected two-space),
i.e.

ES - UX, Y>

E - n <xee, YSaeBndr

then a vectorD normal to the boundary line in the projected two-
space is givenby: rd2e where dl - + yive and d2 m-(xE-xS)

A-21

vectr i on he on-cnve sid ofthe arttion ifi= i graI,



?oject the convex point and boundary end point onto this vector.

Let PC D

PFE- E D
Then if PC 2t PE save PE as the discriminant threshold and

compute and store the discriminant vector.

or if PC < PE replace D by<-dl, -d 2 > , save -PE as the
discriminant threshold and compute the dis-
criminant vector.

The discriminant vector - dl X + d2 L where X and Y are the L-
dimensional projection -rectors used to
project a point in L-space onto the projection
plane (on which the boundary was drawn) for
the purpose of evaluating logic (i.e. deciding
if any point V in L-space lies on the "convex"
side of the L-space hyperplane determined
by the boundary Z-S drawn on the projection
plane).

If V -A -threshold

where 3.- L-dimensional vector for point V, and

A - the discriminant vector,

then the point V is on the convex side of the boundary.

1.3.3.2 Complete Within-Group Logic

This type of logic creates a node, or region within
the feature space, for each individual class present at the node
for which logic is being designed. The logic tree representation
of this is illustrated in Figure 1-19.

ABCD,E

n 0 p q reject

A B C D E (optional)

FIGURE 1-19
Complete Within-Group Logic Tree Node (5 classes)

A-22

/ I ill I I I II II I I I II I I I- - II I I I I I I i



This type of logic is more statistically based and
requires less user interaction than group logic, where the
analyst must determine the boundary(s) himself. MOOS does,
however, allow modifications of these logics wherein the analyst
may make a considerable number of subjective decisions. The three
variations of complete within-group logic are Nearest Mean Vector
(NMV) logic, Dairwise logic, and closed decision boundary logic.

1.3.3.2.1 NMV Logic

Generalized NMV logic is a k-class classification
technique; it classifies an unknown vector from the feature space
according to a metric, which is computed from the unknown vector
to the mean vectors of the k classes of the design set. The
decision is in favor of the class which produces the minimum
value of the metric. The generalized metric is:

where X - the -dimensional unknown feature vector

.ti - the X-dimensional mean vector for classi

Ci - an x 2matrix

If Ci is the covariance matrix for class i of the
design set, then the metric is known as the Mahalanobis distance.

If Ci is the identity matrix, the metric is simply the
Euclidean distance from the unknown vector to the mean vector of
each class.

In MOOS, three basic options of NMV Logic are available;
a reject strategy can be specified under each option. To reduce
unnecessary calculation we use the square of the metric.

In the first option (simple NMV) C is the identity
matrix, and the metric is computed in the form-

di- (x - 2

A-23

, Iq[

II II I I I II I 111 1 •



where X unknown vectorin(x l , x2, ... x

/ mean vector of class i L(2 , .. ( )

In the second option (weighting vectors, C is a diagonal
matrix whose elements are the variances of the components of
the design set samples of class i. The computational form of
the metric used in this option is:

ii

where V. - variance of jth component of the ith class

In the third option (weighting matrix), Ci is the covar-
iance matrix of the design set samples of class i. The computation
in this case involves the actual vector times matrix times vector
=ultiplication, as defined by the generalized metric formula.

The optional reject strategy allows the user to specify
a reject distance. In this case the decision strategy is:
decide on the class j for which d is the minimum of all di,
i- 1, ... , k, if and only if djis less than the reject distance,
otherwise reject. The user can specify a separate reject distance
for each class, or he may use the same reject distance for all
classes. This strategy may be used with any of the three metrics.

1-3.3.2.2 Pairwise Logic

In MOOS, pairwise logic is created by the routine
fisher. This routine creates a one-space logic based on the
Fi direction (see section 1.3.2.2) for each possible pair of
classes from among the classes present at the node for which the
logic is being designed. Given N classes at the node, this will
Produce N(N-l)/2 class pairs. Each of these class-pair logics
classifies (or can be thought of as producing a vote for) a
vector as one or the other of these classes (or reject, depending
upon the number of thresholds selected - see section 1.2).

A-24

! i i i ,,



In the evaluation of pairwise logic, the unlabeled
vector is evaluated by each of the N(N-)/2 class-pair logics
and a "vote count" is kept for each class. After all class
pairs have been evaluated, the vector is classified according to
the vote counts. It is classified as belonging to that class
which received the maximum vote count, provided this maximum is
greater than or equal to a user-specified vote count threshold.
In case of a tie for the maximum vote count, an attempt is made
to break the tie by referring to the a priori class probabilities;
if these are also equal, the vector is rejected.

The flow of pairwise logic evaluation is illustrated
in Figure 1-21.

MOOS also allows the user, through the routine pair-
mod, the capability of modifying each of the class-pair logics.
Te allowable types of logic are:

1) Fisher (1 to 5 thresholds)
2) Any arbitrary one-space projection vector
3) Optimal discriminant plane
4) Any arbitrary two-space plane
5) Boolean

1.3.3.2.3 Closed Decision Boundary Logic

A closed decision boundary logic strategy is imole-
mented in the routine closedcn. This program creates an
L-dimensional hyperregion to enclose each of the classes in
the selected data set. Three types of hyperregion are available:
hyperrectangular, hyperspherical, and hyperellipsoid.

The evaluation of hyperrectangular logic is Derformed
as follows:

1) Project the unknown sample vector on the basis
vectors.

YJ- • -, .j

X - the unknown vector

YJ - the jth component of the projected vector

- the j th basis vecfor

A-25

6L "q



2) The unknown vector is tested against a high and
a low threshold along each basis vector. The
vector is in the hyerrectangle if and only if
its projection on each of the basis vectors is
within the high and low thresholds for each
basis vector. A two-dimensional case is illus-
trated in Figure 1-20.V24' I L

2  - - - - low threshold
2 X [on basis vector

_ _ _ _ _ _ Vi

3.H high threshold
on basis vector
V.

-. . .. . - 2.
&2SI I

- I
L H )

The point X lies between both pairs of thresholds
on the basis vectors and is therefore inside the
hyverrectangle.

Figure 1-20

The evaluation of hyperspherical closed decision
boundary logic is performed by calculating the Euclidean distance
between the unknown vector and the canter vector of the hyper-
schere. If this distance is less than or equal to the radius
of the hypersphere, then the unknown vector is inside the
hvversphere.

S(X-

M- ith component of the center vector of the

hypersphere.

ith comoonent of the unknown vector.

d - Euclidean distance between X and M (d2 is
used rather than d to reduce comoutation).

A-26



The evaluation of hyperellipsoid closed decision
boundary logic is performed by doing the following calculation
for an unknown vector.

(Q. - M) T W ( M. C

X - the unknown vector

M - the center of the hyperellipsoid

W - an L-by-L weighting matrix

C - a size parameter analogous to the radius of
a hypersphere.

If the above condition is met, the unknown vector
lies inside the hyperelliDsoid.

The weighting matrix W is determined as follows:

W- . 3 A B) -

B - an L-by-L matrix whose rows are the axis
vectors of the hyperellipsoid (the only axis
vectors currently implemented are the eigen-
vectors of the covariance matrix of the
class)

A - an L-bv-L diagonal matrix. Aii = the length
of the ith axis of the hyperellipsoid

In the case where A is a diagonal matrix of eigenvalues
and the center vectorti is the mean of a class: W is the inverse
covariance matrix and C is the Mahalanobis distance.

Each class of a given data set may have any one of
the three types of hyperregion surrounding it. Three cases

arise depending on how many hyperregions an unknown vector falls
into. If an unknown vector does not lie in any hyperregion,
it is rejected. If an unknown vector falls in one hyperregion,
it is assigned to the class associated with that hyperregion.
If an unknown vector lies in more than one hyperregion (referred
to as overlap in further discussion), it is rejected unless
the user has specified otherwise.

"Overlap" vectors may be placed'in a new data tree,
and further classification logic developed on the new data
tree to reduce the number of rejections produced by closed
decision boundary logic. This is a non-standard approach in
that a data set must be passed against two independent logic
trees to produce the final classification results.

A-27



When an unknown vector is rejected due to an overlap

condition, some useful information may be retained. 
If the

vector fell into only a few of the possible hyperregions, 
at

Ieast the number of choices as to which class the vector really

belongs has been narrowed. This partial classification informa-

tion may be utilized by Fisher pairwise 
logic.

The evaluation of Fisher pairwise logic performed

on a data tree consisting of "overlap" vectors 
differs from

the usual pairwise evaluation. Each unknown vector is tested

only by pairwise decisions involving the possible classes

indicated by closed decision boundary logic. Partial classi-

ficarion information obtained from a closed decision boundary

evaluation may be utilized only by pairwise logic.

1.3.3.3 Logic Evaluation Outputs

This section describes the various types of confusion
=atrix displays produced by MOOS, and gives some general guide-
tines for interpreting these specialized formats.

1.3.3.3.1 Confusion Matrix for Temporary Between-Group Logic.

The following confusion matrix format is produced by
any one-space group logic, two-space group logic, or Boolean
partition logic.

Referring to Figure 1-22, the first few lines of output
represent the user interaction with the logic design routine
(in this case a two-space group logic). The heart of the display
consists of a matrix format in which the columns are associated
with nodes in the logic tree structure, and the rows correspond
to the data classes in the data set being evaluated. Any partic-
ular element of the matrix is the number of vectors from a given
class which were assigned to a particular logic node. The left-
Cost coluMn of numbers always refers to the node on which logic
was designed. To the right of and below the matrix are various
totals and percentages designed to aid the analyst in the
interpretation of these results.

A-28



unlabeled vector

class pair logics vote counters

A/C

B

classify
according
to class

A/D with max.
c vote cow.:

iff max.

B/C v.se rejec

a vote for no class (reject)
or
a vote for the first class of the pair
or
a vote for the second class of the pair

FIGURE 1-21

PAIRWISE LOGIC (4 CLASSES)

A- 29

L i 1 _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _



* U

V0

a

-~ A

P41

o

* 0
OP 43

o o a 4

a 40
Pa a5

U4.
of~

- . aA 0 1- a

-0 c a 

m ab
0 ~ 0

us ci Amt D 4 ol
0 43L 0 -# .4M0

a 0 we

.a *@@@@

543 0

0 iS 0
61 6 * 40002> 3s

e- C 0 2eA 0a0 -0 6 S

O* >. 0 .40-O- m .5 1

*.5 .4 04 0 v 0.4 6 * nBc

.~' :.5A-30



If the user decides to produce a high-speed Drinter
copy of this confusion matrix, he may choose to get a listing of
all incorrectly classified vectors. Each error is listed by data
class, vector identification number, and the ibgic node to which
it was assigned.

1.3.3.3.2 Confusion Matrix for Temporary Within-Group Logic

The following confusion matrix format is produced by
the within-group logic routines nmv, fisher, and closedcn.
Referring to Figure 1-23, the fiFrs two lines of output describe
the type of within-group logic being evaluated, the data set on
which logic was designed, and the number of dimensions. The
heart of the display consists of a matrix format in which the
column labels correspond to the data classes of the data set
being evaluated, and the row labels are associated with the
classes in the data set on which logic was designed. Any
particular element of this matrix is the number of vectors from
a given data class which were assigned to a particular logic
node. (In the case where all classification was correct, all
off-diagonal elements of the matrix would be zero.) Below this
matrix are various totals and percentages designed to aid the
analyst in the interpretation of his results.

If the user decides to produce a high-speed printer
copy of a confusion matrix, he may choose to get a listing of
all incorrectly classified vectors. For both nmv, fisher, and
closedcn, each error is listed by data class, vector identifica-
tion number and the logic node to which it was assigned. The
following additional useful information is listed for each vectcr:

In the case of nmv, for each misclassified vector, the
distance to the true class-and the distance to the assigned class
is listed. If the vector was rejected, the distance to the
closest class is listed rather than the distance to the assigned
class.

In the case of fisher, the first additional line
usually begins with the phrase "lost to:" followed by a list of
display symbols. Each display symbol refers to an incorrect
oairwise decision involving the true class. If the vector was
assigned to the wrong class by a pairwise decision box, the dis-
play symbol of the incorrect class is listed. An "r" in oaren-
theses immediately following a class symbol indicates that the
vector was rejected, not misclassified, by that decision box.
The second line contains a list of vote counts for the given
vector, in order of ascending logic node number. The last vote
count listed is always the value of the reject vote count. If
there was a tie situation, the first additional line of output
is preceded by "tie" or "favorably broken tie" (see Section
1.3.3.2.2).

Closed decision boundary logic (closedcn) lists the
type of hyperregion associated with the truieT ass. If a vectcr
falls into more than one hyperregion, the names of the classes
associated with those hyperregions are also listed.

A-31



~ 5.0.A lop

E goos-.*e
IL .VJ' ~

inC4
IL-

- 0L

am t-- wrk- -01%
thV

UV

to In mi a0el

* 4J

6 Is Lo 16

Ge * Re..... 0e@@O@.0 000
OS W 0 OM *t @w

- do1a w

44

OM O O O OwbOw
is In4eeeI. *0 16

s weS. 16in0

*U@2 URD 8.hS.h4. 0 c CA is ....

Ob 6. m

A-32



1.3.3.3.3 Confusion Matrix for Overall Logic Evaluation

The confusion matrix produced by overall logic
evaluation (loricevl) is identical in format to the matrix
produced by he temporary within-group logic routines v
fisher, and closedcn. If the user chooses to li1st this matrix
on the high-speed printer, a list of 'all incorrectly classified
vectors may be produced in the format described previously.

1.3.3.3.3.1 Reassociated Names

Additional flexibility is made possible for the
overall logic evaluation of an independent data set by the use
of the reassociated names capability. Utilizing the routine

go1icevl, any data set may be tested against logic designed on
any other data set of equal dimensionality. However, the totals
and percentages correct listed below the matrix will be useful
only if the names of the data classes on which logic was designe;.
are the same as the names of the data classes being evaluated.
This may be accomplished through the use of reasname, which all.-
the user to tag logic nodes with any reassociated names.

In a case where two or more logic nodes have been
given the same reassociated name, the totals below the matrix
are formed by adding the confusion matrix entries for these
logic nodes.

If reassociated names have been added to the logic
tree, logicevl asks the user whether the reassociated names are
to be used in the confusion matrix printout. If the response
is yes, the reassociated names will be used in place of the
original design names; if more than one logic node has the same
reassociated name, only one entry will appear in the confusion
matrix for that name. In all cases where reassociated names
have been added to a logic tree, they will be used to determine
whether the vectors in the data set being evaluated have been
assigned correctly.

One further embellishment has been added to the
reassociated name capability. If sense switch 2 is set prior
to overall logic evaluation, the test of correctness is simply
made on the display symbols of the classes involved, rather
than on the entire four-character names.

A-33



1. 3.4 Boolean Partitions

MOOS has also implemented a user capability for
3oolean defined partitions of the feature space. This capability
cain be used in structure analysis, group logic and pairwise
logic.

This is implemented through utilization of the
PL/l compiler under MULTICS. As a result of the flexibility of
..ULTICS, the analyst can write any Boolean statement (one that
can be evaluated as true or false), provided that it is a
legal PL/1 statement and that it conforms to certain conventions
for referencing feature vector components, and then use that
statement as the basis for a transformation or a partition.

1.3.5 Measurement Transformations

In addition to a measurement reduction transforma-
,ion (trnsform) performed in conjunction with measurement
evaluation computations, a data set within MOOS may be trans-
formed by any of the following three independent transformations;
nor'frm, eigentrn, or measxfrm. Upon execution of any of these
agorirhms every vector in the selected data set is transformed
and a new tree is created from the transformed vectors. The
new tree will have the same structure as the original tree.

1. 3.5.1 The Normalization Transformation

The normalization transformation, normxfrm,
determines the standard deviation along each coordinate measure-
-ent of the selected data set. Each vector component within the
data set is then modified by dividing it by its corresponding
standard deviation. The resulting normalized data set will
have unit variance along each coordinate measurement.

In some cases, normalization may be necessary toensure that the various numerical calculations performed by MOOS
(e.g. matrix inversions) are sufficiently accurate.

1.3.5.2 The Eigenvector Transformation

The eigenvector transformation, eigentrn, computesthe eigenvectors of the covariance matrix of he selected data
set (see Section 1.3.2). The user is then given the option of
=.Ping the selected L-dimensional data set onto an M-dimensional
eioenvecor subspace (M:SL) by selecting the M4 eigenvectors
corresponding to the H largest eigenvalues. The resulting M-
dimensional subspace provides a least squares fit to the
selected data set, since the sum of the squared residual

A-34

IIl



distances from the subspace is minimized. The error in fitting

the data is given by summing the remaining eigenvalues:

Squared Fitting Error -

The transformation essentially involves an orthonormal rotation
of the basis vectors of the data set until they are aligned wif
the eigenvectors.

This technique has proven useful both as a research
tool and as an aid to structure analysis and logic design.
Measurement reduction may also be performed through use of the
eigenvector transformation.

1.3.5.3 The Measurement Compiler Transformation

By using the routine measxfrm, the MOOS user may
define new features which are functions of the original L
measurements. The capability of the MULTICS PL/1 compiler is
utilized in that any statements allowed by PL/Il may be used for
this transformation.

The measurement compiler option provides the .MOOS
user with a practically unlimited capability for defining both
linear and nonlinear transformations. Once the new features
have been defined, the system will execute the transformation,
thereby generating a new data tree whose vectors have the new
user-defined features as their components.

1.3.5.4 Measurement Reduction Transformations

The MOOS system provides three methods for selecting
a projection of the "current data" onto a coordinate subspace
in conjunction with the three methods for evaluating the discrim
inatory value of each measurement (Section 1.3.1). Each of
these measurement evaluation algorithms (dscrmeas, probconf,
features) produces rank order displays of the L measurements
according to a user-specified criterion. The user may select
specified measurements from the data set via the commands
selS and un$ The measurements which are chosen for

retention define the coordinate subsDace and the desired linear
transformation. The user then calls the measurement reduction
transformation routine trnsform to implement the specified trans*
formation, thereby creating atree identical in structure, bht
containing vectors of fewer measurements than the original data
tree.

A-35



REFERENCES

1. Kanal, Laveen N., "Interactive Pattern Analysis and Classification
Systems: A Survey and Commentary", IEEE Proceedings, Vol 60,
No. 10, pp. 1200-1215, October 1972.

2. Sanunon, J. W. Jr., "Interactive Pattern Analysis and Classification",
IEEE Transactions on Computers, Vol C-19, pp. 594-616, July
1970.

3. Simmons, E. J. Jr., "Interactive Pattern Recognition - A Designers
Tool", AFIPS Conference Proceedings, Vol 42, pp. 479-483,
June 1973.

4. Marill, T. and Green, D.M. "On the Effectiveness of
Receptors in Recognition Systems," IEEE Transactions
on Information Theory, Vol. IT-9, pp. 11-17, January 1963.

5. Kadota, T.T. and SheDp, L.A. "On the Best Finite Set of
Linear Observables for Discriminating Two Gaussian
Signals," IEEE Transactions on Information Theory,
Vol. IT-13, pp. 278-284, April 1967.

6. Sammon, J.W. Jr., "An Optimal Discriminant Plane",
IEEE Transactions on Computers, Vol. C-19, pp. 826-829,
September 1970.

A-36



APPENDIX B

OLPARS USER NOTES

B.1 DATA PARTITIONS (BOUNDARIES)

DRAWBNDY lets an OLPARS user partition a one-space or

two-space projection for the purpose of restructuring a data class

or designing group logic. The partitions are used to define a

region in which a vector is located.

For a one-space projection, a partition is created by

designating a threshold value along the baseline (x - axis) of the

display. The line perpendicular to the baseline at the threshold

value represents the partition (boundary).

For a two-space przjection, a partition is created by drawing

a convex boundary containing up to five line segments. A boundary

is convex if a convex polygon can be created when lengthening the

end line segments to meet the display borders. (A convex polygon

lies completely on one side of any side (line segment) extended.)

The convex side of the boundary is designated by the analyst by

entering a "convex point". The so-called "convex point" indicates

the interior region or "convex region" of the polygon. (Note, any

B-1



OLPARS User Notes -- B

DATA PARTITIONS (BOUNDARIES)

boundary with less than three line segments is convex).

Figure B-1 shows, for one and two-space displays, the regions

defined by creating one and two boundaries.

B.2 EVALUATION PROCEDURE

Assigning a data vector to a region

When a user draws boundaries on a display, (s)he has an idea

about how a class or group of classes should be divided

(partitioned). There is a visual perception of which vectors

belong to each region. In order to assure that the vectors are

assigned to the regions as expected, the user must be aware of the

method (algorithm) used by the OLPARS programs for assigning a

vector to a region. When restructuring a data class or designing

group logic, this information is necessary so the user can make the

appropriate associations between display regions and data classes.

The following text describes the method in which vectors are

assigned to display regions.

B.2.1 ONE-SPACE

One Boundary (one Threshold)

If the data vector is on the left side of the boundary, the

vector is assigned to the LEFT REGION; otherwise, the vector is

assigned to the RIGHT REGION.

B- 2



OLPARS User Notes -- B
ONE-SPACE

ONE-SPACE DISPLAY TWO-SPACE DISPLAY

B
U \ REMAINING 0

2 \ REGION U
FIRST N

LEFT CONVEX 2 D
RIGHT REGION \ A

I R
I I Y

2
\ 2:

3\ SECOND B
2\ \ CONVEX 0

\ \ REGION U
MIDDLE FIRST \ \N

LEFT !RIGHT: CONVEX \ D
REGION \ REMAINING A

/ REGION R
I / 3 Y

Figure B-i User Defined Regions On

One and Two Space Displays

8-3

__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _.1'



07 PARS User Notes -- B

ONE-S PACE

Two Boun~daries (Two Thresholds)

The order ir. which the thresholds are entered by the user is

not important. The smaller (or left-most) threshold determines the

left-most boundary, and the larger (or right-most) threshold

determines the right-most boundary. If the data vector is or. the

left side of the left-most boundary, the vector is assigned to the

'LEFT REGION. Otherwise, the vector is compared against the

right-most boundary. If the vector is on the left side of the

right-most boundary, the vector is assigned to the MIDDLE REGION;

otherwise, it is assigned to the RIGHT REGION./

B.2.2 TWO-SPACE

For two-space displays, the OLPARS programs which assign a

vector to a region assume (1) that the boundaries are convex, and

(2) that the so-called "convex point" is on the convex side of the

boundary with which it is associated. If these assumptions are not

met, the vectors may not be assigned to regions as expected by the

user .

One Boundary

If the data vector is on the convex side of the boundary, the

vector is assigned to the FIRST CONVEX REGION; otherwise, it is

assigned to the REMAINING REGION (sometimes called EXCESS REGION).

B-24



OLPARS User Notes -- B

TWO-SPACE

Two Boundaries

The order in which tlie boundaries are entered by the user is

important in the evaluation process. The first boundary entered

will be called "boundary 1,"1 and the second boundary entered will

be called "boundary 2."1 If the data vector is on the convex side of

boundary 1, the vector is assigned to the FIRST CONVEX REGION.

Otherwise, the vector is compared against boundary 2. If the

vector is on the convex side of boundary 2, the vector is assigned

to the SECOND CONVEX REGION. Vectors outside of both convex

regions are assigned to the REMAINING REGION.

The most important fact for the user to be aware of is that

tne evaluation begins with boundary 1. That is, vectors are

assigned to the first convex region before they are assigned to the

second convex region, and assigned to the second convex region

before they are assigned to the remaining region. Therefore, the

order in which the boundaries are entered may affect the vector

assignment, especially when two boundaries cause one region to be

contained within another region, or when two boundaries intersect

within the region of vectors being separated. The analyst must

understand the evaluation process so that the resulting

vector-to-region assignments can be predictable. (See the examples

which follow.)

B- 5



OLPARS User Notes -- B

EXAMPLES

B.2.3 EXAMPLES

Figure B-2 shows examples of vector-to-region assignments.

The individual displays are labelled as follows: Region 'A' is the

LEFT or FIRST CONVEX REGION; Region 'B' is the RIGHT or SECOND

CONVEX REGION; Region 'C' is the MIDDLE or REMAINING REGION; The

numbers on the display diagrams are boundary numbers; and t, u, w,

x, y, and z are vectors.

B-6



I - Space I Boundary 1 - Space 2 Boundaries

1 2

x y x y z

A A C B

-vector 
x to region A 

vector x to region A

vector y to region A vector y to region C

vector z to region B

2 - Space One Boundary

x 

Y

A C

vector x to region A

vector y to region C

FIGURE B-2 3
3-7



2 - Space 2 Boundaries

1 2 2

x y z

x z

A C B B A

vector x to region A vector x to region C

vector y to region C vector y to region B

vector z to region B vector z to region A

1/2 2 1

x y z x y z

C A B A AB2 B

vector x to region C vector x to region A

vector y to region A vector y to region A

vector z to region A vector z to region B

FIGURE B-2 (continued)

3-8



2 - Space 2 Boundaries

1x 22 1

w zBA
A B

A C B
o tc

vector w to region A vector t to region B
vector x to region B vector u to region B
vector y to region A vector v to region C
vector z to region C vector w to region A

vector x to region C
vector y to region A
vector z to region A

1 2 2Ix
x y z1

B B z A

A C c

vector y to region A vector y to region B
vector x to region C vector x to region B
vector z to region B vector z to region AJ

FIGURE B-2 (continued)

3-9

Ii



OLPARS User Manual
INDEX

INDEX

ANYTHING (Display available OLPARS commands) ..... 119
APPEND (Ado node from one tree to another) ....... . 120
Assigned classes ....... ................... ... 28, 315
Associated class names ...... ................ ... 315

Between-group logic ................. 81, 85, 87, 105, 109, 315
BINWIDTH (Alter bin size on l-space display) ..... .... 122
BYEOLP (OLPARS "logout" function) .. .......... ... 126

CDEFAULT (Change or Set CM File Default Values) . . . 127
CDISPLAY (Change One- or Two-Space Display) ...... . 131
Class display symbol .... .. ................. ... 34, 315
Class pair ......... ..................... ... 34, 61, 66, 70, 315
Class select list .... ... ................. ... 10, 316
Classification table ...... ................. ... 316
Cluster plot ........ ..................... ... 19, 316
CGMNOD (Combine two or more lowest data tree nodes) 132
Complete within-group logic .... ............. ... 316
Completed logic node ...... ................. ... 46, 316
Completed logic tree .... .. ................. ... 91, 97, 316
Confusion matrix ....... ................... ... 11, 85, 97, 100, 316
Convex point ........ ..................... ... 316, B-2
Convex region .... .... .................... . 316, B-2
Convex side ........ ..................... ... 316, B-2
Coordinate projection .... .. ................ . 7, 53, 77, 316
Covariance matrix ........ . ........ 9, 54, 104, 316
CRANDTS (Create Random Data Test e) ........ 135
CREATLOG (Create logic for 1,2 space projections) 137
CSCALE (Change scaling for 1,2-space displays) . ... 139
Current data set .... ..... ................... 5, 316
Current logic .... .... .................... . 5, 317
Current option .... ...... .................... 3, 317

Data class ...... ................... . . . 3, 317
Data partition .... .... .................... . 317
Data set dimensionality ..... ............... ... 317
Data tree . . . . . . . . . . . . . . . . . . . . . . 11
Data vector .... ........... ...... .4, 317
DBNDY (Delete all existing display boundaries) . ... 140

DDATANOD (Delete a lowest node from a data tree) . . . 141
DDATATREE (Delete data tree from user directory) . 144
DDSUBSTR (Delete data tree substructure) ....... . 145
Design data set ... .... ................... ... 10, 51, 317
Discriminant measure ............. . 61 to 62, 65, 317
DL0GoREE (Delete logic tree from user directory) . 148
DLSUBSTR (Delete logic tree substructure) ....... . 149
DRAWBNDY (Partition a data projection). ....... 152
DRAWLOG (Display structure of a logic tree) .... 156
DRAWTREE (Display structure of a data tree).. .... 159
DSCRMEAS (Compute measurement evaluation statistics) 161

i-i*



OLPARS User ManualI
INDEX

DTRENAME (Rename an OLPARS data tree). .... ...... 164
DVEC (Delete vectors from data tree class) ....... . 165!I
Eigenvector projection ...... ................ ... 54, 72, 77, 104, 317
EIGNXFRM (eigenvector data transformation)... . .. 168
Excess measurement mode ..... ............... ... 6, 317

Feature (measurement) ..... ................ ... 317
Feature extraction .................... 48, 103, 317
FILEIN (Create OLPARS data tree from a text file). . 171
FILEOUT (Place OLPARS data tree vectors into text file) 175
FISHER (Create Fisher logic) .... ............. ... 177
Fisher direction (projection).. ........ . . . . 318
FISHMOD (Modify vote or threshold count of Fisher logic) 183

Global scale ........ ..................... ... 318

HELP (Provide help on an OLPARS subject or command) . 185

Ignored measurements ........ ................. 8
Incomplete logic ....... ................... ... 43, 318
Incomplete logic node ............ .... . 43, 318
INTENSIFY (Highlight class(es) currently dizplayed) . 187

L1ASDG (-Space Assigned Discriminant Groups for L.D.) 189
LICRDV (1-Space Coordinate Projection for Logic Design) 193
L1EIGV (1-Space Eigenvector Projection for Logic Design) 195
L2ASDG (2-Space Assigned Discriminant Groups for L.D.) 199
L2CRDV (2-Space Coordinate Projection for Logic Design) 203
L2EIGV (2-Space Eigenvector Projection for Logic Design) 205
L2FSHP (2-Space Fisher Direction Projection for L.D.) 209
LISTLOGS (Display user logic tree names) ........ ... 212
LISTREES (Display user data tree names) ....... 213
LOGEVAL (Evaluate current logic using current data set) 214
Logic .......... ........................ .. 5, 318
Logic design ........ ..................... ... 7, 10, 81, 318
Logic tree ................... 11
LTRENAME (Rename an OLPARS logic tree; ........ 219

Macro plot . . . . . . 14, 53, 318
MAKETREE (.i eate data tree from'existing trees) . . . 220
MATRIX (Save or delete matrices in the SM file) . . . 223
MATXFRM (Perform matrix trans. to create a new data tree) 230
Mean vector ............. ................ 318
Measurement evaluation ........ ................ 7, 12. 61, 70. 72, 75, 104, 318
Measurement transformation .... ......... 76, 80, 105, 318
MEASXFRM (User specified data measurement transformation) 232
Micro plot ............................ 14, 87, 318
MOVEC (Move vector in 2-space coordinate vector projection) 236
Multimodal ......... ...................... . 53 to 54, 57, 81, 104, 318

NAMELOG (Create a new logic tree) .. .......... ... 238
Nearest mean vector ...... ................. ... 28, 90, 318



OLPARS User Manual
INDEX

NHEVAL (Evaluate nearest mean vector logic node) . . . 239
NMV (Create nearest mean vector logic) .. ........ .. 240
NMVMOD (Modify nearest mean vector logic) ....... . 243
NNMOD (Modify nearest neighbor logic) .... ... ... 245
NORMXFRM (Create normalized version of current data set) 248
NRSTNBR (Create nearest neighbor logic) . ....... . 250

One-space ......... ......... ......... 11, 14, 53, 87, 319
OPTrIMU4MOD (Create optimal discrim. logic aFisher node) 253
Option list.........................6
Option list (menu) ........... ... 319
Overall logic evaluation. .. ...... ........ 12. 91, 97, 319
Overlap graph ............... ..... . . 50, 53, 104, 319

Pairwise logic ..... ................... 90, 319
Partial logic evaluation ..... ............... ... 319
Projection ....... ..... .. .......... . 319
PROJMN (Display mean vector of projected classes) 257
Prompt mode ..... ..................... 9, 319
PRTCM (Print confusion matrix) ............ 258
PRTDS (Print data set) ....... ........ ....... .259
PRTIDX (Print vector ids. and vector counts).. .. .... 263
PRTLOG (Print information for any logic tree) . . . . 266
PWEVAL (Evaluate Fisher pairwise logic node) .. ..... 269

RANK (Display user-specified type of ranking) . ... 270
Rank order ....................... 11
Rank order display .................. 12, 32, 35, 61, 66, 70, 320
Raw measurement ....... ...... .... . 50, 320
RDISPLAY (Redisplay 1,2-space proj . confusion matrx.) 274
REASNAME (Change reasssociated names in current logic) 275
Reassociated class name ..... ............... .. 98, 320
Rectangular scale ...... ..... .. .... ... 22, 320
REDRAW (Put up an existing boundary or threshold) . . 278
REPROJECT (Reproject data on different eigenvectors) . 279
RESTRUCT (Restructure one class of a data tree) . . . 281
Restructure ....... ..................... ... 57, 104, 320

S1CRDV (1-Space Coordinate Projection) .......... ... 284
S1EIGV (1-Space Eigenvector Projection) ... ....... 285
S2CRDV (2-Space Coordinate Projection) ............ 288
S2EIGV (2-Space Eigenvector Projection) . ....... ... 289
S2FSHP (2-Space Fisher Direction Projection) .. ..... 292
Scale mode ......... ...................... 17, 22, 320
Scale type ........... 17, 22, 320
SCALRET (Return'to orginal displa; scale) . ..... . 295
SCALZM (Perform zooming on 1,2-space displays) .... 296
Scatter matrix ... ..................... . 320
Scatter plot........ -- . ... 19, 66, 85, 320
SELECT (Select class sybols to display) ... ..... 298
Senior node ...... ... ..................... 3, 5, 37, 43, 320
SETDS (Set Current Data Set Name) . ......... 300
SETLOG ('Restore' an existing logic) ......... 302

1-3

I i = : " 1 i i i i in i .. . ( i ii



OLPARS User Manual

INDE X

SLCThEAS (Select meas. in a rank order display) ... 303
Square scale. .. ................... 22, 320
Statistical validity of user dat se..........1
Structure analysis. .. ................ 7, 12, 53, 104, 321
SUI4MCM (Display confusion matrix summary).........306

Test data set .. .................... 10, 51, 96, 106, 321
THRESHMOD (Modify thresholds in Fisher logic node) * 307
TRANSFRM (Create new data tree using selected meas.'s) 310
Truje cl es. .. .................... 28, 321

Two-spac .. .. .. .. .. .. .. .. .. .. . .11, 17, 19, 53 to 54, 321

(Jnimodal. .. ..................... 53, 61, 81 to 82, 3,21
UNION (Select meas. in a ank order dipa). .... 312
Union by class. .. .... . . . .. .. .. .. .. 61 , 66, 70, 321
Union by class pair .. ................. 61, 66. 70, 321

Vector identifier .. .................. 8, 321

Within-group logic. .. ................. 81, 90, 105, 109

Zoom scale. .. ..................... 17, 22, 321




